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Introduction

My story

When I joined the Ruby community, I had little understanding of multi-threaded
programming.

At that time, almost everyone was using MRI, the original implementation of Ruby. Its
threading implementation used green threads. I didn't know what this meant, but
people didn't seem to take it too seriously, so I didn't either. At that time, I didn't even
know where to begin asking questions when it came to Ruby concurrency.

I had heard the term 'thread safety,’ and I knew it was a generally bad thing, but that
was the extent of my knowledge.

I still remember the moment that I actually became afraid of thread safety. It was
when I read an article’ which pointed out that the | |= operator in Ruby is not thread-
safe. Even though the application I worked on wasn't running in multiple threads, I
was now paranoid about using this operator.

In spite of my trepidation, I just couldn't believe that | |= was inherently unsafe. It was
everywhere in our codebase! It was this trepidation, and the realization that there are

1. http://coderrr.wordpress.com/2009/04/29/is-not-thread-safe-neither-is-hashnew-hk/
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fundamentals I knew nothing about, that led me to learn about processes, threads,
networking, and all that fun stuff.

In this book, I'll help you through the same trepidation. I'll show you how, in certain
contexts, the | |= operator can be not thread-safe, but you certainly don't need to stop
using it.

Why care?

If you're reading this book on any kind of modern computing device, it's likely that it
has more than one CPU core. And chances are the device you buy next year will have
more cores than the one you have today.

Unfortunately, just adding more CPU cores doesn't necessarily make all your code run
faster. Your code must be architected to take advantage of multiple CPU cores
using some concurrency mechanism. If you're not doing this, you might as well be
running on ten-year-old hardware.

Operating system processes have been the de facto concurrency mechanism for
decades. With processes, if you want more concurrency, then start more processes!
This has been the norm in the Ruby community for many years.

So, why threads?
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The promise of multi-threading

The promise of multi-threading has always been cheaper concurrency. Cheaper than
processes, that is.

Spawning a thread incurs much less overhead than spawning a process.

The primary difference between using processes versus threads is the way that
memory is handled. At a high level, processes copy memory, while threads share
memory. This makes process spawning slower than thread spawning, and leads to
processes consuming more resources once running. Overall, threads incur less
overhead than processes.

This smaller overhead means threads can you give more 'units’ of concurrency for
the available resources. Of course, this comes with a cost: introducing multiple
threads requires that your code be thread-safe.

Despite the Ruby community's love for process-based solutions, there is a shift
happening. The default MRI implementation has always had, even to this day, a
threading implementation that limits parallel execution. This stifled community
support for a long time.

But more and more people are becoming aware of the promise of multi-threading.
More opportunities, and more choices, are becoming available in the community,
opportunities like higher throughput and more concurrency, while using less
resources. Now's the time to educate yourself and take advantage of these
opportunities.
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What to expect

In this book I'm providing you with lots of small code samples intended to illustrate
key concepts. Please run them in your own console and play with them. Taking the
examples and then tweaking them to test your hypotheses is a fantastic way to learn.
Look in the included code/ folder for all of the snippets to avoid copy/paste issues.

The first part of the book focuses on basic concurrency-related topics. Where possible,
[ attempt to generalize, so that what you learn here can also be applied when you're
programming with other languages or just pondering code in general.

That being said, the primary focus of the book is multi-threaded programming in Ruby.

The second part of the book dives deeper into what the Ruby language offers to
support multi-threaded programming.

The book ends with a hands-on tutorial, where you walk through implementing a
concurrent program using several approaches.

There are no clear dividing lines between these three parts, and there's certainly some
overlap. The goal of the book is to give you the necessary knowledge so that you
can make good decisions about concurrency for your application. This includes
making you comfortable with the idea of multi-threaded programming, dispelling
myths that may be floating around the community, and showing you what tools Ruby
offers to aid you.
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Which version of Ruby is used?
This book studies three different Ruby language implementations.

1. MRI, version 2.0.0 (all code is also 1.9.3 compatible).
2. JRuby, version 1.7.4.

3. Rubinius, version 2.0.0-rc1.

For JRuby and Rubinius, it's assumed that you're running them in 1.9 language mode.
When relevant, I'll show sample code output from all three implementations.

The reason to include multiple Ruby implementations is that they have very different
stories when it comes to multi-threading, which can lead to differences in behaviour.
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You're Always in a Thread

By default, your code is always running a thread. Even if you don't create any new
threads, there's always at least one: the main thread.

You can use an irb session to demonstrate this.

$ irb

> Thread.main

=> #<Thread:0x007fdc830677c0 run>

> Thread.current == Thread.main
=> true

The main thread is the original thread that's created when you start a Ruby program.
You can always create more threads, but you can't change the reference to
Thread.main, it will always point to this original thread.

The main thread has one special property that's different from other threads. When

the main thread exits, all other threads are immediately terminated and the
Ruby process exits. This is not true of any other thread besides the main thread.

thread = Thread.new do
# do the important work
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end

# The main thread sleeps to prevent it from finishing execution.

# If it were allowed to run, it would simply exit, killing the other
# thread and preventing it from doing its important work.

sleep

The Thread.current method always refers to the current thread. This may seem
obvious, but you have to wrap your head around the fact that this one method will
return a different Thread object depending on which thread it's called from.

This irb session spawns a new thread, then compares Thread.current with
Thread.main. Notice that in this case the two are no longer equal.

$ irb

> Thread.new { Thread.current == Thread.main }.value
=> false

wwrt | 16



Threads of Execution

Creating new threads is easy:

Thread.new { "Did it!" }

But multi-threaded programming is not as simple as just spawning more threads.
There are lots of questions to be answered, such as:

* Where/when should threads be spawned?
* How many threads?
* What about thread safety?
Threads are a powerful concept, and like anything powerful, they also allow you to

shoot yourself in the foot if you don't know what you're doing. Here I'll give you an
overview of exactly what threads offer you.

Shared address space
The most important concept to grasp is that threads have a shared address space.

This is a fancy way of saying that multiple threads will share all of the same references
in memory (ie. variables), as well as the AST (ie. the compiled source code).
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This simple fact is what makes threads so powerful, and also what makes them
difficult to work with. I've already given you an idea of why threads are good; here's a
simple program to illustrate their difficulty.

/code/snippets/file uploader.rb

require 'thread'’

class FileUploader
def initialize(files)
@files = files
end

def upload
threads = []

@files.each do |(filename, file_data)|
threads << Thread.new {
status = upload_to_s3(filename, file_data)
results << status

}

end

threads.each(&: join)
end

def results
@results ||= Queue.new
end
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def upload_to_s3(filename, file)
# omitted
end
end

uploader = FileUploader.new('boots.png’ => '*pretend png data*', 'shirts.png’' => '*pretend png data*')
uploader.upload

puts uploader.results.size

If you run your eye down this example program, it looks pretty innocent. The obvious
thing that sticks out is that the #upload method spawns one thread for each file that it
uploads to S3. Since a call to Thread.new returns immediately, both of those threads
will be working concurrently.

The #upload method ends by calling #join on each of the threads, which will block
until the thread finishes execution.

Unfortunately, this code is not thread-safe. It's quite possible that one of the
statuses in the @results array will be lost. I intentionally omitted the S3 upload
implementation details to let you know that the thread-safety issue does not come
from there. The problem is actually with the #results method.

This might not seem possible; we're just using regular Ruby code here with a

conditional assignment! But this operator can absolutely cause problems in a multi-
threaded context. This chapter will help you understand why that's so.
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I'll let this example sit with you for a minute, but I'll come back and explain why this
happens before you finish this chapter.

Many threads of execution

We're used to looking at source code and seeing a sequential set of instructions. First,
this method calls that one, then if this value is true, it executes this block of code,
then... you get the idea. It's natural for you to think about your code this way. This is
typically the way that we write it.

When you trace a path through your code like this, you are tracing a thread of
execution, a possible path that can be traversed through your code. It's easy to grasp
that there is more than one possible thread of execution. For example, if you pass in a
different input, you may get a different output.

It's harder to grasp that there can be multiple threads of execution operating on the
same code at the same time. This is precisely the case in a multi-threaded
environment. Multiple threads of execution can be traversing their own paths, all at
the same time.

At that point, it's no longer possible to step through these simultaneous threads of
execution in any kind of predictable manner. It's as if someone just changed the
rules of physics on you: things that were previously absolute truths no longer
hold true. This is because there's a certain amount of randomness introduced in the
way that threads are scheduled.

wwrt | 20



Thankfully, you are able to introduce some thread-aware guarantees into your code.
This is the heart of thread safety. But let's talk a bit more about this randomness first.

Native threads

All of the Ruby implementations studied in this book ultimately map one Ruby thread
to one native, operating system thread.

Take this silly example, run against MRI:

100.times do
Thread.new { sleep }
end

puts Process.pid
sleep

This creates 100 sleeping threads, then sleeps the main thread to prevent it from
exiting. Now we can ask top(1) how many threads this process has:

$ top -11 -pid 8409 -stats pid,th

PID  #TH
8409 102

Note that you should use your own pid (process id) to test this out.
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So we created 100 new threads, the main thread counts as 1, and MRI maintains an
internal thread for housekeeping', which adds up to 102. The important point is that
when we create 100 threads, those 100 threads are handled directly by the operating
system.

Non-deterministic context switching

This section has a fancy title. It refers to the work that's done by your operating
system thread scheduler. This is a part of your operating system itself, and you have
no control over how it functions. This little ditty is responsible for scheduling a// of the
threads running on the system.

It has to ensure that if there are 453 threads running on the system, they all get fair
access to the system resources. This is a very complicated piece of software, with
many optimizations, but it all comes down to this: context switching.

In order to provide fair access, the thread scheduler can 'pause’ a thread at any
time, suspending its current state. Then it can unpause some other thread so it can
have a turn using system resources. Then, at some point in the near future, the thread
scheduler can unpause the original thread, restoring it to its previous state.

This is known as context switching, and there's a certain degree of randomness to it.
It's possible for your thread to be interrupted at any time. Thus, there are primitives

1. http://www.jstorimer.com/2013/01/24/threads-not-just-for-speed.html
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you can use to say, "Hey, thread scheduler, I'm doing something important here, don't
let anybody else cut in until I'm done."

Context switching in practice

Now that you have a basic understanding of the inherent randomness, let's take an

inside look at what really happened during the example from the beginning of this
chapter.

Here it is again for the sake of posterity:

require 'thread’

class FileUploader
def initialize(files)
@files = files
end

def upload
threads = []

@files.each do |(filename, file_data)|
threads << Thread.new {
status = upload_to_s3(filename, file_data)
results << status
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end

threads.each(&: join)
end

def results
@results ||= Queue.new
end

def upload_to_s3(filename, file)
# omitted
end
end

uploader = FileUploader.new('boots.png’' => 'xpretend png data*', 'shirts.png' => 'xpretend png datax')
uploader.upload

puts uploader.results.size

The Queue class is a thread-safe data structure that ships with Ruby. More about it in
the chapter on thread-safe data structures.

Remember, sometimes we may lose one of the statuses in @results. Here's how.

First, we need to break apart the | |= statement. Remember that a thread can be
interrupted at any time. Although the | |= operator can't be broken down any further
in your Ruby code, there are a lot of underlying operations that support it.

# This statement
@results ||= Queue.new
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# when broken down, becomes something like
if @results.nil?

temp = Queue.new

@results = temp
end

This doesn't break it down to the full extent of the underlying implementation (for
that, you'd need to look right to the source of your Ruby implementation), but this
breaks it down to essentials.

1. If eresults currently holds the value of nil.
2. Get the return value of the Queue.new method.

3. Assign that value to @results.

In the example above, the FileUploader is instantiated with two files to upload. Let's
walk through how that might play out from the perspective of two individual threads.

For the sake of simplicity, I'm going to assume that your code can only run on one CPU
core, and that both threads have already been spawned. They're now ready to start
executing their block of code.

Now the main thread is blocking on the call to #join while the other two threads do
their work. Let's call them Thread Aand Thread B.

First, Thread A performs its upload to S3 while Thread Bis paused. It receives the
status and is ready to push that into results.
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Thread A checks the value of @results and finds that it's currently nil. It gets as far
as calling Queue.new, then the thread scheduler decides this is a good time for a
context switch.

Thread A is now paused, while Thread B gets a turn. It performs its upload to S3 and
receives its status. It then checks the value of eresults and finds thatit's nil.
Remember that Thread A never got a chance to assign its Queue back to @results.

So Thread B creates a Queue and assigns it to @results, then pushes its status into it.
Thread B has done its work, so it terminates. Now Thread A is given priority again, so it
continues exactly where it left off.

At this moment in time, @results is no longer nil. It holds the value of the Queue
that Thread B assigned to it. But Thread Ais already at step #3 in the | |= process. It
already checked for nil and created the Queue. So it goes ahead with step #3 and
assigns its Queue to @results.

Now Thread A pushes its status into results. Thread Ais finished, so it terminates.
Now the thread scheduler can start the main thread, which has been waiting for these
threads to terminate.

The program ends with @results having been assigned twice, and ultimately holding
just one value: the status of Thread A, in this case.

It's entirely possible for the thread scheduler makes a different decision on a different

run of this program. Sometimes, @results may hold only the status of Thread B, or it
may hold the statuses from both threads.

wwrt | 26



The easy fix, in this case, is to not use | |=. Instead, instantiate @results in
initialize, before any threads are spawned. It's good practice to avoid lazy
instantiation in the presence of multiple threads.

This course of events is what's known as a 'race condition.' When you're on the
receiving end, this can be very hard to track down.

A race condition involves two threads racing to perform an operation on some
shared state. In some cases, the race may result in the underlying data becoming
incorrect, like in the example I laid out here. In some cases, the race may work out
fine and produce the correct result. It's inherently non-deterministic. Still other race
conditions may only be exposed under heavy load, when concurrency is highest.

Race conditions occur because a given operation, @results ||= Queue.new in this
case, is not atomic. If the | |= operation were atomic, there would be no race
condition. An atomic operation is one which cannot be interrupted before it's
complete. Even in the case of a multi-step operation, with proper protection in place, it
will be treated as a single operation, either succeeding or failing without exposing its
state mid-operation. This is a key concept you'll see in coming chapters.

Why is this so hard?

Gosh, this sure does look hard. Time for some good news.

Am I saying that any instance of | |= in Ruby isn't thread-safe? Do you have to stop
using | |=? Absolutely not.
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I really wanted to drive home an example of how things can go wrong, and give you a
basic understanding of the thread scheduler and its mechanisms. Ultimately, this stuff
is hard because it's unpredictable. As I said, you can no longer trace the execution of
the program in a predictable way.

But, before we lose hope, I want to share a principle. Understanding this principle, and
taking the necessary actions, would have provided the guarantee we were looking for
in the example program. Indeed, it really informs thread-safe code at any level.

Any time that you have two or more threads trying to modify the same thing at
the same time, you're going to have issues. This is because the thread scheduler
can interrupt a thread at any time.

This points to two obvious strategies for avoiding issues: 1) don't allow concurrent
modification, or 2) protect concurrent modification. We'll talk much more about both
of these strategies in the coming chapters.

Understanding this idea of non-determinism and multiple threads of execution is at
the core of why multi-threaded programming is considered hard.

But, multi-threaded programming isn't hard. Rather, it's no harder than functional
programming, or cryptography. These are difficult subjects, but not insurmountable.
These are things that any programmer can and should come to understand with some
education and experimentation.
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Lifecycle of a Thread

I've given you a few little tastes of the Thread API already at this point. Now I'll
intentionally show you a bit more of the API that defines the lifecycle of a Thread.

require 'thread'

# ./code/snippets/require thread.rb

puts defined?(Thread) #=> constant
puts defined?(Queue) #=> nil

require 'thread’

Funnily enough, require 'thread’ doesn't load the Thread constant. Thread is loaded
by default, but requiring 'thread’ brings in some utility classes like Queue.

Thread.new

You spawn a thread by passing a block to Thread.new (or one of its aliases), and
optionally passing in block variables like in the Thread.start example.
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Thread.new { ... 3}
Thread.fork { ... }
Thread.start(1, 2) { |x, y| x +y }

This reveals a few interesting properties.

Executes the block. You pass a block when spawning the thread. The thread will yield
to that block. Either it will reach the end of the block, or an exception will be raised. In
either case, the thread terminates.

Returns an instance of Thread. Like all constructors, Thread.new returns a new
instance. Realize that Thread.new returns a Thread instance representing the sub-
thread that was just spawned. Like any other object, calling methods on the new
Thread instance will affect the spawned thread, not the current thread.

This is the starting point for any thread that you're going to create.

Thread#join

Once you've spawned a thread, you can use #join to wait for it to finish.

thread = Thread.new { sleep 3 }
thread. join
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puts "You'll have to wait 3 seconds to see this”

If you run the above code example without calling #join, you wouldn't have to wait
for 3 seconds. Without #join, the main thread would exit before the sub-thread can
execute its block. Using #join provides a guarantee in this situation.

Calling #join on the spawned thread will join the current thread of execution
with the spawned one. In other words, where there were previously two
independent threads of execution, now the current thread will sleep until the spawned
thread exits.

Thread#join and exceptions

When joining two threads, you have to recall how a thread can terminate. In one case,
a thread finishes executing its block and then terminates. This is the happy path.

In the other case, a thread raises an unhandled exception before it finishes executing
its block. When one thread raises an unhandled exception, it terminates the
thread where the exception was raised, but doesn't affect other threads.

Similarly, a thread that crashes from an unhandled exception won't be noticed until
another thread attempts to join it.
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thread = Thread.new do
raise 'hell’
end

# simulate work, the exception is unnoticed at this point
sleep 3

# this will re-raise the exception in the current thread
thread. join

This shows the literal meaning of 'join.' When one thread has crashed with an
unhandled exception, and another thread attempts to join it, the exception is re-raised
in the joining thread.

Here's the output of this example in MRL:

code/snippets/exception_on_join.rb:2:in ‘block in <main>': hell (RuntimeError)

If you take a close look at the backtrace, you can see that it properly places the site of
the exception on line 2, rather than on the line where the join occured.

Thread#value

Thread#value is very similar to #join: it first joins with the thread, and then returns
the last expression from the block of code the thread executed.
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thread = Thread.new do
400 + 5
end

puts thread.value #=> 405
The #value method has the same properties as #join regarding unhandled

exceptions because it actually calls #join. The only difference is in the return value.

Thread#status

Every thread has a status, accessible from Thread#status.

It's probably most common for one thread to check the status of some other thread,
but it is possible for a thread to check its own status using Thread.current.status.

Ruby defines several possible values for Thread#status.

* 'run’:Threads currently running have this status.

'sleep’: Threads currently sleeping, blocked waiting for a mutex, or waiting on
IO, have this status.

+ false: Threads that finished executing their block of code, or were successfully
killed, have this status.

* nil: Threads that raised an unhandled exception have this status.
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* aborting: Threads that are currently running, yet dying, have this status.
ode/snippets/thread status.rb

adder = Thread.new do
# Here this thread checks its own status.
Thread.current.status #=> 'run’
2 x 3

end

]

puts adder.status #=> 'run
adder. join
puts adder.status #=> false

Thread.stop

This method puts the current thread to sleep and'tells the thread scheduler to
schedule some other thread. It will remain in this sleeping state until its alternate,
Thread#wakeup is invoked. Once #wakeup is called, the thread is back into the thread
scheduler's realm of responsibility.

thread = Thread.new do
Thread.stop
puts 'Hello there’
end
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# wait for the thread to trigger its stop
nil until thread.status == 'sleep’

thread.wakeup
thread. join

Thread.pass

This one is similar to Thread.stop, but instead of putting the current thread to sleep, it
just asks the thread scheduler to schedule some other thread. Since the current
thread doesn't sleep, it can't guarantee that the thread scheduler will take the hint.

Avoid Thread#raise

This method should not be used. It doesn't properly respect ensure blocks, which can
lead to nasty problems in your code.

In terms of functionality, this method will allow a caller external to the thread to raise
an exception inside the thread. In fact, the backtrace will actually point to whatever
line the thread happened to be executing when this is called, which is not useful for
debugging.
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$cleaned_up = false

t = Thread.new do
begin
# nada
ensure
sleep
$cleaned_up = true
end
end

nil until t.status == 'sleep'’

# At this point, the thread should be sleeping

# inside the ensure block. Now raise an exception
# inside the thread.

t.raise 'hell’

# Joining with the thread will cause the exception
# to be re-raised here.
begin
t.join
rescue
end

# This value is false because the ensure block

# was aborted when Thread#raise was called. This
# breaks the contract that ensure blocks provide.
puts $cleaned_up #=> false
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Avoid Thread#kill

This method should not be used for the exact same reason as the one above.

Supported across implementations

This Thread API is a Ruby API. I've hinted that the different Ruby implementations
have different underlying threading behaviours. That's certainly the case, but all the
Ruby implementations we're looking at in this book support this same Thread
APL.

1. Adapted from an example by James Tucker.
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Concurrent != Parallel

I hinted in previous chapters that threads provide a concurrency mechanism, one
capable of utilizing multi-core systems.

A sensible question following this might be:
So multiple threads will be running my code in parallel, right?

Before I can answer that question, I need to clear up a common misunderstanding:
concurrent and parallel are not the same thing.

Keeping that in mind, I can rephrase your question into two more sensible questions:

1. Do multiple threads run your code concurrently? Yes.

2. Do multiple threads run your code in parallel? Maybe.

Now I'll attempt to explain the difference. Since we're all programmers here, I'll use a
programmer at work as an example.
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An illustrative example

Imagine you're a programmer working for an agency. They have two projects that
need to be completed. Both will require one full day of programmer time. There are
(at least) three ways that this can be accomplished.

1. You could complete Project A today, then complete Project B tomorrow.

2. You could work on Project A for a few hours this morning, then switch to
Project B for a few hours this afternoon, and then do the same thing
tomorrow. Both projects will be finished at the end of the second day.

3. Your agency could hire another programmer. He could work on Project B and
you could work on Project A. Both projects will be finished at the end of the
first day.

This example is a bit contrived. It doesn't take into account the time required to switch
projects, ramp-up time, inevitable delays, etc. But let's pretend things work this way
just for the sake of example.

What do these three ways of working represent?

The first way represents working serially. This is the normal path of single-
threaded code. Given two tasks, they will be performed in order, one after another.
Very organized and easy to follow.

The second way represents working concurrently. This represents the path of
multi-threaded code running on a single CPU core. Given two tasks, they will each be
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performed at the same time, inching forward bit by bit. In this case there's just one
programmer, or CPU, and the tasks compete to get access to this valuable resource.
Otherwise, their work won't progress.

This way nicely illustrates that concurrent, multi-threaded code doesn't necessarily run
faster than single-threaded code. In this case the tasks aren't being accomplished any
quicker; they're just being organized differently.

The third way represents working in parallel. This represents the path of multi-
threaded code running on a multi-core CPU. Given two tasks, they will be performed
simultaneously, completing in half the time. Notice the subtle difference between #2
and #3. Both are concurrent, but only #3 is parallel.

The way I've explained it, #3 almost looks like two instances of #1 progressing side-by-
side. This is one possible configuration, but it's also possible that as one programmer
gets stuck on an issue, a context switch takes place. In this example, another
programmer might come in to take his place. This preserves the 'inching forward bit
by bit' idea, except now there are sufficient resources to keep the process inching
forward continually.

Notice that more resources are required in order to work in parallel. The idea of one
programmer working on two projects simultaneously, with one hand on each of two
keyboards, for instance, is just as absurd as one CPU core executing two instructions
simultaneously.
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You can't guarantee anything will be parallel

This last example illustrated that your code can be concurrent without being parallel.
Indeed, all you can do is to organize your code to be concurrent, using multiple
threads, for instance. But making it execute in parallel is out of your hands. That
responsibility is left to the underlying thread scheduler.

For instance, if you're running on a 4-core CPU, and you spawn 4 threads, it's possible,
but unlikely, that your code will all be executed on just one CPU core. That's ultimately
the choice of the thread scheduler. In practice, thread schedulers employ fair
queueing so that all threads are given more-or-less equal access to available
resources, but that cannot be controlled by your code.

The point of all this is to say that when you write multi-threaded code, you have no
guarantee as to the parallelism of the environment that your code will be executed in.
In practice, you should assume that your concurrent code wi//be running in parallel
because it typically will, but you can't guarantee it!

Given this, multi-threaded code should be referred to as concurrent, rather than
parallel. There's very little you can do from your side of the keyboard to guarantee
that your code will run in parallel. However, by making it concurrent, you enable it
to be parallelized when the underlying system allows it.

This is an important topic to grasp, so if you're still not 100% clear on concurrency

versus parallelism, I highly recommend these two other explanations of the same
conflation:
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1. Rob Pike describes how concurrency enables parallelism, but they're not the
same thing. Lots of simple diagrams to explain key concepts. link

2. Evan Phoenix describes the difference between concurrency and parallelism
and how it relates to existing Ruby implementations. link

The relevance

I've been saying this is an important concept to grasp. The first reason is so that you
can use the right terms when you're talking about it.

The second reason is that this lays a foundation for understanding the effects of
thread synchronization and locking, which will get more coverage in coming chapters.
Before that, this knowledge will drive your understanding of MRI's infamous GIL.
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The GIL and MRI

In the last chapter, you learned the key differences between concurrency and
parallelism. This is an important concept because MRI allows concurrent execution
of Ruby code, but prevents parallel execution of Ruby code.

I'll pre-emptively answer a question I'm sure you have: do JRuby and Rubinius have a
GIL? Do they allow parallel execution of Ruby code? Both JRuby and Rubinius do not
have a GIL, and thus do allow parallel execution of Ruby code.

At this point, the term GIL might be unfamiliar to you. Let's tease it apart.

The global lock

The term GIL stands for Global Interpreter Lock. It's sometimes called the GVL (Global
VM Lock) or just The Global Lock. All three of these terms refer to the same thing. I'll
continue to use the term GIL from now on.

So what's the GIL? The GIL is a global lock around the execution of Ruby code.
Think of it this way: there is one, and only one, GIL per instance of MRI (or per MRI

process). This means that if you spawn a bunch of MRI processes from your terminal,
each one will have its own GIL.
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If one of those MRI processes spawns multiple threads, that group of threads will
share the GIL for that process.

If one of these threads wants to execute some Ruby code, it will have to acquire this
lock. One, and only one, thread can hold the lock at any given time. While one thread
holds the lock, other threads need to wait for their turn to acquire the lock.

This has some very important implications for MRI. The biggest implication is that
Ruby code will never run in parallel on MRI. The GIL prevents it.

An inside look at MRI

I want to walk you through the viewpoint of a thread trying to execute some Ruby
code inside the MRI virtual machine. This will give you a better understanding of
exactly how the GIL works and where it fits in.

Let's pretend that MRI is executing this bit of code:

require 'digest/md5’

3.times.map do
Thread.new do
Digest::MD5.hexdigest(rand)
end
end.each(&:value)
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Nothing too exciting. Each thread will generate an MD5 digest based on a random
number.

For simplicity's sake, I'm going to skip right to the interesting part and assume that the
threads have already been spawned. We'll jump in assuming we have three threads
spawned and ready to execute their block of Ruby code.

Remember that each MRI thread is backed by a native thread, and from the kernel's
point of view, they're all executing in parallel. The GIL is a detail inside of MRI and
doesn't come into play except when executing Ruby code.

Since all three threads want to execute Ruby code, they all attempt to acquire the GIL.
The GIL is implemented as a mutex (something you'll see more of very soon). The
operating system will guarantee that one, and only one, thread can hold the mutex at
any time.

So all three threads attempt to acquire the GIL, but only one thread actually acquires
it. The other two threads are put to sleep until that mutex becomes available again.

The thread that acquired the GIL (let's call it Thread A), now has the exclusive right to
execute Ruby code inside of MRI. Until Thread A releases the GIL, the other threads
won't get a chance to execute any Ruby code.

At this point, Thread A executes some arbitrary amount of Ruby code. How much?
That's unspecified, and left up to the MRI internals. After a certain interval, Thread A
releases the GIL. This triggers the thread scheduler to wake up the other two threads
that were sleeping, waiting on this mutex.
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Now both of these threads vie for the GIL, and the kernel must decide again which
thread will acquire it.

It's given to a new thread; let's call it Thread B. Now Thread B has exclusive ownership
of the GIL. It can execute the Ruby code that it needs to. Meanwhile, Thread A has
gone back and attempted to acquire the GIL again. So once again, the other two
threads are sleeping, blocked waiting for their turn to acquire the GIL.

This should make it crystal clear how the GIL prevents parallel execution of Ruby code.
It's only possible for one thread to execute Ruby code at any given time.

The special case: blocking 10

Before I get to the motivations for this behaviour, I have to tell you about a special
case: blocking IO. I've been saying the GIL prevents parallel execution of Ruby code,
but blocking IO is not Ruby code.

In the above walkthrough, what happens when a thread executes some Ruby code
that blocks on IO? Let's say our example looked like this:

require 'open-uri'’

3.times.map do
Thread.new do
open('http://zombo.com")
end
end.each(&:value)
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This Ruby code will trigger an HTTP request to be sent to the zombo.com server.
Depending on network conditions and the status of zombo.com, this may take a long
time to finish. Thankfully, MRI doesn't let a thread hog the GIL when it hits
blocking IO.

This is a no-brainer optimization for MRIL. When a thread is blocked waiting for 10, it
won't be executing any Ruby code. Hence, when a thread is blocking on IO, it releases
the GIL so another thread can execute Ruby code.

For the sake of posterity, let's quickly run through the walkthrough from above with
this blocking I0 example. We're already at the point where all the threads have been
spawned. Now they all attempt to acquire the GIL to execute Ruby code.

Thread A gets the GIL. It starts executing Ruby code. It gets down to Ruby's Socket
APIs and attempts to open a connection to zombo.com. At this point, while Thread A is
waiting for its response, it releases the GIL. Now Thread B acquires the GIL and goes
through the same steps.

Meanwhile, Thread Ais still waiting for its response. Remember that the threads can
execute in parallel, so long as they're not executing Ruby code. So it's quite possible
for Thread A and Thread Bto both have initiated their connections, and both be
waiting for a response.

Under the hood, each thread is using a ppoll(2) system call to be notified when their

connection attempt succeeds or fails. When the ppoll(2) call returns, the socket will
have some data ready for consumption. At this point, the threads will need to execute
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Ruby code to process the data. So now the whole process starts over again. I think you
get the idea.

Why?

This walkthrough has painted a bit of a bleak picture of MRI internals. It seems that
MRI is intentionally placing a huge restriction on parallel code execution. Why would it
do this?

Surely, this isn't meant as a malicious decision against you. Indeed, MRI core
developers have been calling the GIL a feature for some time now, rather than a bug.
In other words, the MRI team has expressed no intention of getting rid of the GIL.

There are three reasons that the GIL exists:
1. To protect MRI internals from race conditions
I've only covered this topic briefly thus far, but I've stressed that race
conditions in your code can cause issues. The same issues that can happen in
your Ruby code can happen in MRI's C code. When it's running in a multi-
threaded context, it will need to protect critical parts of the internals with some

kind of synchronization mechanism.

The easiest way to reduce the number of race conditions that can affect the
internals is to prevent multiple threads from executing in parallel.
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2. To facilitate the C extension API

The 'C extension API' is a C interface to MRI's internal functions, often used
when people want to interface Ruby with a C library.

Calling an MRI function from C is subject to the same GIL that the equivalent
Ruby code would be subject to.

This Ruby code:

array = Array.new
array.pop

is equivalent to this C code:

VALUE ary = rb_ary_new();
VALUE last_element = rb_ary_pop(ary);

The important thing to note is that these calls to the C extension API lock the
GIL, just like the corresponding Ruby code.

The other reason that the GIL exists for C extensions is so that MRI can
function safely, even in the presence of C extensions that may not be thread-
safe. Especially when wanting to integrate an existing C library with Ruby,
thread-safety is not always guaranteed.

3. To reduce the likelihood of race conditions in your Ruby code
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Just as the easiest way to protect MRI internals from race conditions is to
disallow real parallel threading, it's also the easiest way to protect your Ruby
code from race conditions. In this regard, the GIL reduces the likelihood that
you shoot yourself in the foot when using multiple threads. However, the cost
for this reduction in entropy is high.

In many situations, Ruby provides a lot of power to you, the user of the
language. It trusts that you will do the right thing, knowing that it's possible to
really get things wrong. However, when it comes to multi-threading, MRI takes
the opposite approach. They remove the ability of the system to do parallel
threading.

It's a bit like wearing fully body armour to walk down the street: it really
helps if you get attacked, but most of the time it's just confining.

It's important to note that the GIL only reduces entropy here; it can't rule it out
all together. The next section goes into more detail on this.

Misconceptions

Now that you have an understanding of what the GIL is, and why it exists, this is
probably the most important section of this chapter.

Over time, people have made false assumptions or incredible claims about the GIL.
Unfortunately, it's a misunderstood part of MRI. This leaves us in a situation where
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many people have an unwitting negative, or positive, impression of the GIL, without
really understanding what it does or what it guarantees.

Up until now, I've given you some idea about how it works; now I'll try to dispel two
myths in the community.

Myth: the GIL guarantees your code will be thread-safe.

This isn't true. Throughout this chapter, I've been careful to say that the GIL reduces
the likelihood of a race condition, but can't prevent it. When multiple threads are
running in parallel, and a race condition is possible, the likelihood of it happening is
higher. There are simply more opportunities for things to go wrong.

But with a GIL, two threads are never running Ruby code in parallel. This greatly
reduces the likelihood of things going wrong, but still can't prevent it. Let's use this
Ruby code as an example:

code/snippets/unsafe counter.rb

@counter = @

5.times.map do
Thread.new do
temp = @counter
temp = temp + 1

@counter = temp
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end
end.each(&:join)

puts @counter

This probably isn't code that you would write every day, but it illustrates the point. This
is the expanded version of the += operator.

With no synchronization, even with a GIL, it's possible that a context switch happens
between incrementing temp and assigning it back to counter. If this is the case, it's
possible that two threads assign the same value to counter. In the end the result of
this little snippet could be less than 5.

It's rare to get an incorrect answer using MRI with this snippet, but almost guaranteed
if you use JRuby or Rubinius. If you insert a puts in the middle of the block passed to
Thread.new, then it's very likely that MRI will produce an incorrect result. Its
behaviour with blocking 10 encourages a context switch while waiting for the thread to
print to stdout.

As you get a better understanding of race conditions and thread safety in the

upcoming chapters, the absurdity of the claim that the GIL guarantees thread safety
will become clearer.

Myth: the GIL prevents concurrency.

This is a misunderstanding of terms.

wwrt | 52



The GIL prevents parallel execution of Ruby code, but it doesn't prevent concurrent
execution of Ruby code. Remember that concurrent code execution is possible even
on a single core CPU by giving each thread a turn with the resources. This is the
situation with MRI and the GIL.

So the GIL prevents parallel execution of Ruby code, but not concurrent execution.
The other important thing to remember is the caveat: blocking I0. The GIL allows
multiple threads to be simultaneously blocked on IO. This means that you can use
multiple threads to parallelize code that is I0-bound.

MRI's multi-threading behaviour, with respect to blocking IO, is actually very similar to

the behaviour of JRuby or Rubinius in the face of blocking I0. Any of these
implementations will allow blocking IO to be parallelized.
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Real Parallel Threading with JRuby and
Rubinius

So MRI has a GIL. The GIL prevents real parallel threading. What about JRuby and
Rubinius?

JRuby and Rubinius don't have a GIL. This means they do allow for real parallel
execution of Ruby code.

Proof
Before I get into any more technical explanations, I want to prove what I'm saying!

The following benchmark calculates 1 million prime numbers 10 times. I chose this
particular example because it executes a lot of Ruby code, and because it's easy to
spread the work across multiple threads.

It uses Ruby's Prime library to generate the primes. The first benchmark block does it
ten times in one thread; the second block does it two times in each of five threads.
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require 'benchmark’
require 'prime’

primes = 1_000_000
iterations = 10

num_threads = 5
iterations_per_thread = iterations / num_threads

# warmup (initialize the underlying singleton)
Prime.each(primes) { }

Benchmark.bm(15) do |x]|
x.report('single-threaded’') do
iterations.times do
Prime.each(primes) { }
end
end

x.report('multi-threaded’) do
num_threads. times.map do
Thread.new do
iterations_per_thread.times do
Prime.each(primes) { }
end
end
end.each(&:join)
end
end

Here are the results across MRI, JRuby, and Rubinius:
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Multi-threaded prime number generation

M single threaded
B multi threaded

Number of seconds
(%)

MRI Rubinius JRUby

The various implementations have different performance profiles when it comes to
heavy math calculations, but the thing to focus on is the relative difference within each
implementation.

wwrt | 56



Both JRuby and Rubinius were able to calculate the result significantly faster when
using multiple threads. Contrast that with MRI. MRI's multi-threaded results showed
no significant improvement over its single-threaded result.

These figures are a direct representation of the GIL. The GIL in MRI prevented Ruby
code from being executed in parallel, hence no speedup.

But...don't they need a GIL?

At the end of the last chapter, I gave you three reasons why the GIL exists in MRI. This
would be a good time to address how the other implementations solve these
problems. Let's take them in order.

1. To protect internals from race conditions

JRuby and Rubinius do indeed protect their internals from race conditions. But
rather than wrapping a lock around the execution of all Ruby code, they
protect their internal data structures with many fine-grained locks.

Rubinius, for instance, replaced their GIL with about 50 fine-grained locks'.
Without a GIL, its internals are still protected, but because it spends less time
in these locks, more of your Ruby code can run in parallel.

2. To facilitate the C extension API

1. http://www.jstorimer.com/2013/03/26/brian-shirai-threads.html
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JRuby has an easy answer to this: it doesn't support the C extension API. For
gems that need to run natively, they support Java-based extensions. I won't go
into any more detail about this.

Rubinius does support the MRI C extension APIL Interestingly, it simply
preserves its GIL-less behaviour in the presence of these extensions. They
opted to try to help gem authors fix thread-safety issues, rather than try to
prevent them from happening. They say that no issues have cropped up thus
far.

3. To reduce the likelihood of race conditions in your Ruby code

JRuby and Rubinius don't have an answer to this one. Any thread-safety issues
in your code are likely to crop up much more quickly when using these
implementations. The simple reason is that your code will actually be running
in parallel.

The only way to solve this issue is to be aware of thread safety when writing
your code. There's lots more about this topic in the next few chapters.

2. http://www.jstorimer.com/2013/03/26/brian-shirai-threads.html

wwrt | 58


http://www.jstorimer.com/2013/03/26/brian-shirai-threads.html

How Many Threads Are Too Many?

First, in order to benefit from concurrency, we must be able to partition problems into
smaller tasks that can be run concurrently. If a problem has a significant part that
can’t be partitioned, then the application may not really see much performance gain
by making it concurrent.

This question is relevant whether you're whipping up a quick script to scrape some
websites, trying to speed up a long-running calculation, or tuning your multi-threaded
webserver.

I hope you're not surprised, but the answer is: Well, that depends.

The only way to be sure is to measure and compare. Try it out with 1 thread per CPU
core, try it out with 5 threads per CPU core, compare the results, and move forward.

However, there are some heuristics you can use to get started. Plus, if you're new to
this, it's good to have a ballpark idea of what's sane. Are 100 threads too many? How
about 10,000?

ALL the threads

How about we start by spawning ALL the threads? How many threads can we spawn?
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1.upto(10_000) do |i]
Thread.new { sleep }
puts i

end

This code attempts to spawn 10,000 sleeping threads. If you run this on OSX you'll get
about this far:

2042
2043
2044
2045
2046
ThreadError: can't create Thread (35)

On OSX, there's a hard limit on the number of threads that one process can spawn. On
recent versions, that limit is somewhere around 2000 threads.

However, we were able to spawn at least that many threads without the system falling
down around us. As mentioned earlier, spawning a thread is relatively cheap.

If I run this same bit of code on a Linux machine, I'm able to spawn 10,000 threads

without blinking. So, it's possible to spawn a lot of threads, but you probably don't
want to.
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Context Switching

If you think about it for a minute, it should be clear why you don't want to spawn
10,000 threads on a 4-core CPU.

Even though each thread requires little memory overhead, there is overhead for the
thread scheduler to manage those threads. If you have only have 4 cores, then only 4
threads can be executing instructions at any given time. You may have some threads
blocking on IO, but that still leaves a lot of threads idle a lot of the time, requiring
overhead to manage them.

But even in the face of increased overhead for the thread scheduler, it does

sometimes make sense to spawn more threads than the number of CPU cores. Let's
review the difference between I0-bound code and CPU-bound code.

[10-bound

Your code is said to be I0-bound if it is bound by the IO capabilities of your machine.
Let me try that again with an example.

If your code were doing web requests to external services, and your machine

magically got a faster network connection, your program would likely be sped up as
well.
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If your code were doing a lot of reading and writing to disk, and you got a new hard
drive that could seek faster, your code would likely be sped up, again, as a result of
better hardware.

These are examples of I0-bound code. In these situations, your code typically spends
some time waiting for a response from some IO device, and the results aren't
immediate.

In this case, it does make sense to spawn more threads than CPU cores.

If you need to make 10 web requests, you're probably best off to make them all in
parallel threads, rather than spawning 4 threads, making 4 requests, waiting, then
making 4 more requests. You want to minimize that idle time spent waiting.

Let's make this concrete with some code.

In this example, the task is to fetch http://nytimes.com 30 times. I tested this using
different numbers of threads. With one thread, 30 fetches will be performed serially.
With two threads, each thread will need to perform 15 fetches, etc.

I tested different numbers of threads in order to find the sweet spot. Make no

mistake, there will be a sweet spot between utilizing available resources and
context switching overhead.

wwrt | 62



require 'benchmark’
require 'open-uri'’

URL = 'http://www.nytimes.com/'
ITERATIONS = 30

def fetch_url(thread_count)
threads = []

thread_count.times do
threads << Thread.new do
fetches_per_thread = ITERATIONS / thread_count

fetches_per_thread.times do
open(URL)
end
end
end

threads.each(&: join)
end

Benchmark.bm(20) do |bm|
[1, 2, 3, 5, 6, 10, 15, 30].each do |thread_count|
bm.report("with #{thread_count} threads”) do
fetch_url(thread_count)
end
end
end
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I plotted the results across the studied Ruby implementations to get this graph
illustrating the results:
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I ran this benchmark on my 4-core Macbook Pro.
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As expected, all of the implementations exhibited similar behaviour with respect to
concurrent IO.

The sweet spot for code that is fully IO-bound is right around 10 threads on my
machine, even though I tested up to 30 threads. Using more than 10 threads no longer
improves performance in this case; it just uses more resources. For some cases, it
actually made performance worse.

If the latency of the 10 operations were higher, I might need more threads to hit that
sweet spot, because more threads would be blocked waiting for responses more of
the time. Conversely, if the latency were lower, I might need fewer threads to hit the
sweet spot because there would be less time spent waiting, as each thread would be
freed up more quickly.

Finding the sweet spot is really important. Once you've done this a few times, you

can probably start to make good guesses about how many threads to use, but the
sweet spot will be different with different IO workloads, or different hardware.

CPU-bound

The flip side of IO-bound code is CPU-bound code. Your code is CPU-bound if its
execution is bound by the CPU capabilities of your machine. Let's try another example.

If your code needed to calculate millions of cryptographic hashes, or perform really

complex mathematical calculations, these things would be bound by how much
throughput your CPU could muster in terms of CPU instructions.
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If you upgraded to a CPU with a faster clock speed, your code would be able to do
these calculations in a shorter time period.

Let's re-use the example from the last chapter that calculated digits of pi. That's
certainly a CPU-bound bit of code. Here's the benchmark code:

it ./code/benchmarks/cpu_bound. rk

require 'benchmark'’

require 'bigdecimal’
require 'bigdecimal/math’

DIGITS = 10_000
ITERATIONS = 24

def calculate_pi(thread_count)
threads = []

thread_count.times do
threads << Thread.new do
iterations_per_thread = ITERATIONS / thread_count

iterations_per_thread.times do
BigMath.PI(DIGITS)
end
end
end

threads.each(&: join)
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end

Benchmark.bm(20) do |bm|
[1, 2, 3, 4, 6, 8, 12, 24].each do |thread_count|
bm.report("with #{thread_count} threads”) do
calculate_pi(thread_count)
end
end
end

This graph illustrates the results:
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Note: JRuby seems to have an issue with calculating that many digits of pi. Its results
weren't comparable, so I left them out.

This graph has a bit of a different shape than the last one. Again, the absolute values
aren't important here; the shape is the important part.

For MRI, there's no curve this time. Performance isn't impacted with the introduction
of more threads. This is a direct result of the GIL. Since the GIL is a lock around the
execution of Ruby code, and in this case we're benchmarking execution of Ruby code,
using more threads has no effect.

For Rubinius, the curve was lowest when running with 4 threads. I ran this example
locally on my 4-core CPU. That's no coincidence.

CPU-bound code is inherently bound by the rate at which the CPU can execute
instructions. So when I have my code running in parallel across 4 threads, I'm
utilizing all of the power of my 4-core CPU without any overhead.

Once you introduce more than 4 threads, it's still possible for you to fully utilize all of
your CPU resources, but now there's more overhead. That's why we see the curve
going back up. The thread scheduler is incurring overhead for each extra thread.

The takeaway from all this is that each thread you spawn incurs overhead to manage
it. Creating more threads isn't necessarily faster. On the other hand, introducing
more threads improved performance in these two examples by anywhere between
100% and 600%. Finding that sweet spot is certainly worth it.

wwrt | 70



So... how many should you use?

I showed some heuristics for code that is fully I0-bound or fully CPU-bound. In reality,
your application is probably not so clear cut. Your app may be I0-bound in some
places, and CPU-bound in other places. Your app may not be bound by CPU or IO. It
may be memory-bound, or simply not maximizing resources in any way.

A Rails application is a prime example of this. Between communicating with the
database, communicating with the client, and calling out to external services, there are
lots of chances for it to be I0-bound. On the other hand, there are things that will tax
the CPU, like rendering HTML templates, or transforming data to JSON documents.

So, as I said at the beginning of this chapter, the only way to a surefire answer is to

measure. Run your code with different thread counts, measure the results, and then
decide. Without measuring, you may never find the 'right' answer.
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Thread safety

Right away, I want to acknowledge that the term 'thread safety’ gets thrown
around a lot. Unfortunately, it's rarely clear what exactly thread safety is about. You'll
sometimes hear about a given library or piece of code being thread-safe or not thread-
safe. But if it's not thread-safe, what will happen?

Will your program crash? Will the server start on fire? Will subtle bugs be magically
introduced at a slow but consistent rate, without any possibility of reproducing them?

What's really at stake?

If your code is 'thread-safe,’ that means that it can run in a multi-threaded context and
your underlying data will be safe. By data, I'm not talking about what's in your
database; I'm talking about what values your program has stored in memory. Your
data is what's at stake.

When your code isn't thread-safe, the worst that can happen is that your
underlying data becomes incorrect, yet your program continues as if it were correct.

There are a few more ways that we can say that that might make it clearer.
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+ Ifyour code is 'thread-safe,' that means that you can run your code in a multi-
threaded context and your underlying data will be safe.

+ If your code is 'thread-safe,' that means that you can run your code in a multi-
threaded context and your underlying data remains consistent.

+ If your code is 'thread-safe,' that means that you can run your code in a multi-
threaded context and the semantics of your program are always correct.

What's really at stake when your code isn't thread-safe is your data.

Once again, let's make this concrete with an example.

=

# This class represents an ecommerce order
Order = Struct.new(:amount, :status) do
def pending?
status == 'pending’
end

def collect_payment
puts "Collecting payment..."
self.status = 'paid’
end
end

# Create a pending order for $100
order = Order.new(100.00, 'pending')
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# Ask 5 threads to check the status, and collect
# payment if it's 'pending’
5.times.map do
Thread.new do
if order.pending?
order.collect_payment
end
end
end.each(&:join)

This is a variant of what's called the 'check-then-set' race condition. The name says it
all. This race condition is manifested by code that first checks a condition, then does
something to change its value.

At first glance, this code may look innocent. But here's some sample output from
running this code.

$ ruby code/snippets/concurrent_payment.rb
Collecting payment...
Collecting payment...

$ jruby code/snippets/concurrent_payment.rb
Collecting payment...Collecting payment...
Collecting payment...Collecting payment. ..
Collecting payment. ..

$ rbx code/snippets/concurrent_payment.rb
Collecting payment...Collecting payment...
Collecting payment...Collecting payment...
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Yikes! Your customers won't be happy if you're charging multiple times for each order.

I encourage you to try out this sample code. You will continually get different, yet
incorrect, results. This is a result of the check-then-set race condition. This is not
Ruby's fault; this is your fault for not properly synchronizing access to the order.

Let's quickly review what happened here. The problem here is similar to the issue we
saw with the += operator in a previous chapter. We have a multi-step operation
(checking the order status, then collecting payment and setting the status) that can be
interrupted before it's finished. As the results showed, it's quite possible, even likely,
that this multi-step operation will be interrupted, such that one thread progresses
partway through the operation, then another thread does the same. The end result is
that the really critical piece, the part that collects payment, is performed twice.
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Thread A

payment if it's 'pending
S5.times.map do

Thread.new do

Thread B

5.times.map do
Thread.new do

if order.pending? Context switch if order.pending? Thread B
order.collect_payment —- order.collect_payment collects
end end payment

end
end.each(&: join)

end
end.each(&: join)

Here, Thread A checks the order.pending? condition and finds it to be true. A context
switch immediately takes place, pausing Thread A before it can collect payment. Then,
Thread B finds the condition to be true and proceeds to collect payment. Once Thread
A becomes active again, it will pick up right where it left off and collect payment again,
charging the customer for a second time.

Key operations like this need to be made atomic. Your code needs to tell the thread

scheduler that this multi-step operation should not be interrupted. You'll see how that
can be done in the next chapter.
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The computer is oblivious

I want you to imagine this code as part of a larger ecommerce system. If that were the
case, then this incorrect behaviour would seem to go unchecked. In other words, your
code would have no idea that it's going forward with the system in an incorrect state.
From a human perspective, we can see that collecting payment twice is bad, but this
particular class has no notion that things have gone wrong.

All this to say that when Ruby produced the incorrect result from the example above,
it didn't come with an exception, or a process aborting. The computer is unaware of
thread-safety issues. The onus is on you to notice these problems and deal with
them.

This is one of the hardest problems when it comes to thread safety. There are no
exceptions raised or alarm bells rung when the underlying data is no longer correct.
Even worse, sometimes it takes a heavy load to expose a race condition like this.

Something might not be noticed during development, but then crop up during a
critical time in production.

Is anything thread-safe by default?

At this point, you may be wondering: is anything thread-safe by default?
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In Ruby, very few things are guaranteedto be thread-safe by default. Even compound
operators, like += or ||=, although they are a single operation in Ruby, are not a single
atomic, thread-safe operation from the perspective of the underlying VM.

The same is true for core collection classes. Things like Array and Hash are not
thread-safe by default. Let's illustrate this with a silly example.

code/snippets/concurrent array pushing.rb

shared_array = Array.new

10.times.map do
Thread.new do
1000.times do
shared_array << nil
end
end
end.each(&:join)

puts shared_array.size

In this silly example you have 10 threads each appending 1000 elements to a shared
Array. In the end, the array should have 10 * 1000 = 10,000 elements.

$ ruby code/snippets/concurrent_array_pushing.rb
10000

$ jruby code/snippets/concurrent_array_pushing.rb
7521
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$ rbx code/snippets/concurrent_array_pushing.rb
8541

Again we see an incorrect result with no exceptions raised by Ruby. This does not
mean that you need to stop using << or Arrays, just that you need to be aware of what
guarantees they provide.

The reason that the above code example was susceptible to issues is that multiple
threads shared an object and attempted to update that object at the same time.

Remember that any concurrent modifications to the same object are not thread-
safe. This includes things like adding an element to an Array, or regular ol'
assignment, any concurrent modification.

In any of these situations, your underlying data is not safe if that operation will be
performed on the same region of memory by multiple threads.

This is not nearly as scary as it sounds. I'm only showing you one side of the
equation.

If you read between the lines, you'll see that these operations are fine to use in a
threaded program, so long as you can guarantee that multiple threads won't be
performing the same modification to the same object at the same time.

These 'guarantees’ are really the crux of making your programs thread-safe. The world
of multi-threading is a world of chaos. Thankfully, you do have some mechanisms
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available to bring a bit of order to this chaos. The next few chapters will cover a few
different ways you can do that.

The good news in all of this? Most of the time, just writing good, idiomatic Ruby will
lead to thread-safe code.
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Protecting Data with Mutexes

Mutexes provide a mechanism for multiple threads to synchronize access to a critical
portion of code. In other words, they help bring some order, and some guarantees, to
the world of multi-threaded chaos.

Mutual exclusion

The name 'mutex’ is shorthand for 'mutual exclusion.' If you wrap some section of
your code with a mutex, you guarantee that no two threads can enter that
section at the same time.

I'll demonstrate first using the silly Array-pushing example from the previous chapter.

code/snippets/concurre ) pushing with mutex.rb

shared_array = Array.new
mutex = Mutex.new

10.times.map do
Thread.new do
1000.times do
mutex.lock
shared_array << nil
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mutex.unlock
end
end
end.each(&:join)

puts shared_array.size

This slight modification is guaranteed to produce the correct result, across Ruby
implementations, every time. The only difference is the addition of the mutex.

$ ruby code/snippets/concurrent_array_pushing_with_mutex.rb
10000

$ jruby code/snippets/concurrent_array_pushing_with_mutex.rb
10000

$ rbx code/snippets/concurrent_array_pushing_with_mutex.rb
10000

Let's step through the changes.

Besides creating the mutex with Mutex.new, the important bits are the lines above and
below the <<. Here they are again:

mutex.lock

shared_array << nil
mutex.unlock

The mutex sets up some boundaries for the thread. The first thread that hits this bit of
code will lock the mutex. It then becomes the owner of that mutex.
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Until the owning thread unlocks the mutex, no other thread can lock it, thus no
other threads can enter that portion of code. This is where the guarantee comes from.
The guarantee comes from the operating system itself, which backs the Mutex
implementation’.

In this program, since any thread has to lock the mutex before it can push to the
Array, there's a guarantee that no two threads will be performing this operation at the
same time. In other words, this operation can no longer be interrupted before it's
completed. Once one thread begins pushing to the Array, no other threads will be able
to enter that portion of code until the first thread is finished. This operation is now
thread-safe.

Before I say anything else, I'll show a more commonly used convenience method that
Ruby's Mutex offers:

mutex.synchronize do
shared_array << nil
end

You pass a block to Mutex#synchronize. It will lock the mutex, call the block, and then
unlock the mutex.

1. See pthread_mutex_init(3)
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The contract

Notice that the mutex is shared among all the threads. The guarantee only works if
the threads are sharing the same Mutex instance. In this way, when one thread locks a
mutex, others have to wait for it to be unlocked.

I also want to point out that we didn't modify the << method or the shared_array
variable in any way in order to make this thread-safe.

So, if some other part of your code decides to do shared_array << item, but without
wrapping it in the mutex, that may introduce a thread-safety issue. In other words,
this contract is opt-in. There's nothing that stops some other part of the code from
updating a value without the Mutex.

The block of code inside of a Mutexi#synchronize call is often called a critical section,

pointing to the fact that this code accesses a shared resource and must be handled
correctly.

Making key operations atomic

In the last chapter we looked at multi-step operations, specifically a check-then-set
race condition. You can use a mutex to make this kind of operation thread-safe, and
we'll look at the effect of both updating values and reading values with a mutex.

We'll be reusing the ecommerce order example from the last chapter. Let's make sure
that our customers are only charged once.
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# ./code/snippets/concurrent payment with mutex.rb

# This class represents an ecommerce order
class Order
attr_accessor :amount, :status

def initialize(amount, status)
@amount, @status = amount, status
@mutex = Mutex.new

end

def pending?
status == 'pending'’
end

# Ensure that only one thread can collect payment at a time
def collect_payment
@mutex.synchronize do
puts "Collecting payment..."
self.status = 'paid’
end
end
end

# Create a pending order for $100
order = Order.new(100.00, 'pending'’)

# Ask 5 threads to check the status, and collect
# payment if it's 'pending’
5.times.map do
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Thread.new do
if order.pending?
order.collect_payment
end
end
end.each(&: join)

The change here is in the Order#collect_payment method. Each Order now has its
own Mutex, initialized when the object is created. The Mutex creates a critical section
around the collection of the payment. This guarantees that only one thread can collect
payment at a time. Let's run this against our supported Rubies:

$ ruby code/snippets/concurrent_payment_with_mutex.rb
Collecting payment...
Collecting payment...
Collecting payment...

$ jruby code/snippets/concurrent_payment_with_mutex.rb
Collecting payment...
Collecting payment...
Collecting payment. ..
Collecting payment...
Collecting payment. ..

$ rbx code/snippets/concurrent_payment_with_mutex.rb
Collecting payment...
Collecting payment...
Collecting payment...

Huh? This didn't help at all. We're still seeing the incorrect result.
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The reason is that we put the critical section in the wrong place. By the time the
payment is being collected, multiple threads could already be past the 'check' phase of
the 'check-and-set' race condition. In this way, you could have multiple threads
queued up to collect payment, but they would do it one at a time.

We need to move the mutex up to a higher level so that both the 'check' AND the 'set,’
in this case checking if the order is pending and collecting the payment, are inside the
mutex.

Here's another go with the mutex in a different spot.

# This class represents an ecommerce order
class Order
attr_accessor :amount, :status

def initialize(amount, status)
@amount, @status = amount, status
end

def pending?
status == 'pending’
end

def collect_payment
puts "Collecting payment..."
self.status = 'paid’

end
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end

# Create a pending order for $100
order = Order.new(100.00, 'pending’)
mutex = Mutex.new

# Ask 5 threads to check the status, and collect
# payment if it's 'pending’
5.times.map do
Thread.new do
mutex.synchronize do
if order.pending?
order.collect_payment
end
end
end
end.each(&:join)

The change here is that the mutex is now used down inside the block passed to
Thread.new. It's no longer present inside the Order object. The mutex is now a
contract between the threads, rather than a contract enforced by the object.

But notice that the mutex now wraps the 'check' AND the collect_payment method
call. This means that once one thread has entered that critical section, the others must
wait for it to finish. So now you have a guarantee that only one thread will check that
condition, find it to be true, and collect the payment. You have made this multi-step
operation atomic.

Here are the results to prove it:
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$ ruby code/snippets/concurrent_payment_with_looser_mutex.rb
Collecting payment. ..

$ jruby code/snippets/concurrent_payment_with_looser_mutex.rb
Collecting payment. ..

$ rbx code/snippets/concurrent_payment_with_looser_mutex.rb
Collecting payment...

Now the result is correct every time.

Mutexes and memory visibility

Now I want to throw another question at you. Should the same shared mutex be used
when a thread tries to read the order status? In that case, another thread might end
up using something like this:

status = mutex.synchronize { order.status }
if status == 'paid'’

# send shipping notification

end

If you're setting a variable while holding a mutex, and other threads want to see the
most current value of that variable, they should also perform the read while holding
that mutex.
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The reason for this is due to low-level details. The kernel can cache in, for instance, L2
cache before it's visible in main memory. It's possible that after the status has been
set to 'paid,’ by one thread, another thread could sti//see the Order#status as
'pending' by reading the value from main memory before the change has propagated
there.

This generally isn't a problem in a single-threaded program because race conditions
like this don't happen with one thread. In a multi-threaded program there's no such
guarantee. When one thread writes to memory, that operation may exist in cache
before it's written to main memory. If another thread accesses that memory, it will get
a stale value.

The solution to this is something called a memory barrier. Mutexes are implemented
with memory barriers, such that when a mutex is locked, a memory barrier provides
the proper memory visibility semantics.

Going back to our ecommerce example for a moment:

# With this line, it's possible that another thread
# updated the status already and this value is stale
status = order.status

# With this line, it's guaranteed that this value is

# consistent with any changes in other threads
status = mutex.synchronize { order.status }

Scenarios around memory visibility are difficult to understand and reason about.
That's one reason other programming languages have defined something called a
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memory model’, a well-defined specification describing how and when changes to
memory are visible in other threads.

Ruby has no such specification yet, so situations like this are tricky to reason about
and may even yield different results with different runtimes. That being said, mutexes
carry an implicit memory barrier. So, if one thread holds a mutex to write a value,
other threads can lock the same mutex to read it and they wi// see the correct, most
recent value.

Mutex performance

As with all things, mutexes provide a tradeoff. It may not be obvious from the previous
section, but mutexes inhibit parallelism.

Critical sections of code that are protected by a mutex can only be executed by one
thread at any given time. This is precisely why the GIL inhibits parallelism! The GIL is
just a mutex, like the one you just saw, that wraps execution of Ruby code.

Mutexes provides safety where it's needed, but at the cost of performance. Only one
thread can occupy a critical section at any given time. When you need that guarantee,
the tradeoff makes sense. Nothing is more important than making sure that your data
is not corrupted through race conditions, but you want to restrict the critical section
to be as small as possible, while still preserving the safety of your data. This
allows as much code as possible to execute in parallel.

2. Here is Java's memory model: http://www.cs.umd.edu/~pugh/java/memoryModel/, and here is the one for Golang:
http://golang.org/ref/mem
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Given this rule, which of the following two examples is more correct?

'code/snippets/coarse mutex.rb

require 'thread'’
require 'net/http’

mutex = Mutex.new
@results = []

10.times.map do
Thread.new do
mutex.synchronize do
response = Net::HTTP.get_response('dynamic.xkcd.com’, '/random/comic/')
random_comic_url = response['lLocation’]

@results << random_comic_url
end
end
end.each(&:join)

puts @results

# ./code/snippets/fine mutex.rb

require 'thread'’
require 'net/http’

mutex = Mutex.new
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threads = []
results = []
10.times do
threads << Thread.new do
response = Net::HTTP.get_response('dynamic.xkcd.com’, '/random/comic/')

random_comic_url = response['lLocation’]

mutex.synchronize do
results << random_comic_url
end
end
end

threads.each(&:join)
puts results

Did you get it? The second one is more correct because it uses a finer-grained mutex.
It protects the shared resource (@results), while still allowing the rest of the code to
execute in parallel.

The first example defines the whole block as the critical section. In that example, since
the HTTP request is /inside the critical section, it can no longer be performed in
parallel. Once one thread locks that section, other threads have to wait for their turn.

A coarse mutex is unnecessary in this case because the HTTP request doesn't access
anything shared between threads. Similarly, working with the response object doesn't
need to be in a critical section. The response object is created right in the current
thread's context, so we know it's not shared.
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However, the line that modifies @results does need to be in a critical section. That's a
shared variable that could be modified by multiple concurrent threads. If you had
used Ruby's Queue instead of Array, it would have provided the thread-safety
guarantees, and you wouldn't need the mutex here. But two threads modifying the
same Array need to be synchronized.

In this case, the performance of the coarse-grained lock example will be similar to
single-threaded performance. The performance of the fine-grained lock example is
roughly 10x better given that the main bottleneck is the HTTP request.

The takeaway: put as little code in your critical sections as possible, just enough
to ensure that your data won't be modified by concurrent threads.

The dreaded deadlock

Deadlock is probably a term that you've encountered before. Whether or not it was in
the context of multi-threading, the term probably carried some trepidation. It's got a
deadly kind of sound to it, a bit like 'checkmate'. Deadlock isn't unlike checkmate, it
essentially means 'game over' for the system in question.

A deadlock occurs when one thread is blocked waiting for a resource from another
thread (like blocking on a mutex), while this other thread is itself blocked waiting for a
resource. So far, this is a normal situation, multiple threads are blocked waiting for
mutexes, waiting for the GIL, etc. It becomes a deadlock if a situation arises where
neither thread can move forward. In other words, the system comes to a place where
no progress can happen.
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The classic example of this involves two threads and two mutexes. Each thread
acquires one mutex, then attempts to acquire the other. The first acquisition will go
fine, then both threads will end up waiting forever for the other to release its mutex.

Let's walk through an example.

Thread A Thread B

Mutex A Mutex B

[unlocked] [unlocked]

Here's our starting state, there are two threads and two mutexes.
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Thread A Thread B

Mutex A Mutex B

[locked] [locked]

Now each thread acquires one of the mutexes. Thread A acquired Mutex A, Thread B
acquired Mutex B. Both mutexes are now in a locked state.
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Thread A Thread B

Mutex B
[locked]

Mutex A
[locked]

Now the deadlock occurs. Both threads attempt to acquire the other mutex. In both
cases, since the mutex they're attempting to acquire is already locked, they're blocked
until it becomes available. But since both threads are now blocked AND still holding
their original mutexes, neither will ever wake up. This is a classic deadlock.

So, what can be done about this? I'll introduce two possible solutions. The first is
based on a method of Mutex you haven't seen yet: Mutex#try_lock.

The try_lock method attempts to acquire the mutex, just like the lock method. But
unlike lock, try_lock will notwait if the mutex isn't available. If another thread
already owns the mutex, try_lock will return false. If it successfully acquires the
mutex, try_lock will return true.
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This can help in the deadlock situation seen above. One way to avoid deadlock at the
last step would have been to use the non-blockingthe non-blocking Mutex#try_lock.
That way the threads wouldn't be put to sleep. But that's not enough on its own: if
both threads had just looped on try_lock, they still would never be able to acquire
the other mutex. Rather, when try_lock returns false, both threads should release
their mutexes and return to the starting state. From there, they can start again and
hope for a better outcome.

With this approach, it's fine to use a blocking lock to get the first mutex, but try_lock
should be used when acquiring the second mutex. If the second mutex is unavailable,
that means another thread holds it and is probably trying to acquire the mutex you're
holding! In that case, both mutexes should be unlocked for the dance to begin again.
Thanks to the non-deterministic nature of things, one thread shoul/d be able acquire
both mutexes at some point.

The downside to this approach is that another kind of issue can arise: livelocking. A
livelock is similar to a deadlock in that the system is not progressing, but rather
than threads stuck sleeping, they would be stuck in some loop with each other with
none progressing.

You can see that this is possible using the try_lock solution I outlined here. It's
possible that Thread A acquires Mutex A, Thread B acquires Mutex B, then both
try_lock the other mutex, both fail, both unlock their first mutex, then both re-
acquire their first mutex, etc., etc. In other words, it's possible that the threads are
stuck in constant action, rather than stuck waiting. So there's a better solution.
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A better solution is to define a mutex hierarchy. In other words, any time that two
threads both need to acquire multiple mutexes, make sure they do it in the
same order. This will avoid deadlock every time.

Harking back to our example with the diagrams, we already have hierarchical labeling
of the mutexes. Mutex A is the obvious choice for a first mutex, and Mutex B the
obvious choice for a second. If both threads need both, make sure they start with
Mutex A. That way, if one thread acquires Mutex A, it's guaranteed to have no chance
to deadlock on Mutex B. It can do the work it needs to do, then release both mutexes,
at which point Thread B can lock Mutex A, and continue down the chain.

Deadlocks can wreak havoc on your system. If a thread is stuck in deadlock, it could be
hogging a valuable resource, which blocks still other threads. Be aware of situations
where a thread may block on more than one resource, and watch out for deadlocks
any time that a thread needs to acquire more than one mutex.
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Signaling Threads with Condition Variables

Since you just were introduced to mutexes, now is the time to introduce condition
variables. They don't solve the same problem, but they're inherently married to
mutexes.

So what problem do they solve?

A ConditionVariable can be used to signal one (or many) threads when some event
happens, or some state changes, whereas mutexes are a means of synchronizing
access to resources. Condition variables provide an inter-thread control flow
mechanism. For instance, if one thread should sleep until it receives some work to do,
another thread can pass it some work, then signal it with a condition variable to keep
it from having to constantly check for new input.

The API by example
I'll introduce the API via example. In the last chapter, there was an example that

fetched a random comic URL from xkcd.com. Now you'll extend that to do something
with that URL.
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require 'thread’
require 'net/http’

mutex = Mutex.new
condvar = ConditionVariable.new
results = Array.new

Thread.new do

10.times do
response = Net::HTTP.get_response(’'dynamic.xkcd.com’,

random_comic_url = response['Location’]

'/random/comic/")

mutex.synchronize do
results << random_comic_url
condvar.signal # Signal the ConditionVariable
end

end

end

comics_received = 0

until comics_received >= 10
mutex.synchronize do
while results.empty?
condvar.wait(mutex)

end

url = results.shift
puts "You should check out #{url}"

end
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comics_received += 1

end
Let's step through this bit by bit.

mutex = Mutex.new
ConditionVariable.new

condvar =

results = Array.new

Here you create a new ConditionVariable, in much the same way that you create a
Mutex. This instance, too, must be shared amongst threads in order to be useful.

Thread.new do
10.times do
Net::HTTP.get_response('dynamic.xkcd.com’, '/random/comic/")

response =

random_comic_url response[ 'Location’]

mutex.synchronize do
results << random_comic_url
# Signal the ConditionVariable

condvar.signal
end

end

end
Here we have one thread fetching a random comic from xkcd, ten times. Since it's just

one thread, the HTTP requests are actually happening serially, one after another. This
just puts that work in a background thread, so the main thread can continue on.
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Once this thread receives a random comic URL, it locks the mutex, pushes the URL
onto results, then signals condvar.

The ConditionVariable#signal method takes no parameters and has no meaningful
return value. Its function is to wake up a thread that is waiting on itself. That happens
lower down. If no threads are currently waiting, this is just a no-op.

comics_received = @

until comics_received >= 10
mutex.synchronize do
while results.empty?
condvar.wait(mutex)
end

The background thread is fetching the random comics and, here, the main thread will
be collecting the results.

First, some housekeeping to make it sure gets all 10 results.

The next part might seem a bit strange. The call to Mutex#synchronize will lock the
mutex, then assuming that there are no results ready to be collected,
ConditionVariable#fwait is called. If results is not empty, it can be processed
immediately without waiting.

At first glance, it seems that waiting on the condition variable while holding a mutex

will block other threads from holding that mutex. But notice how you pass in the
mutex to ConditionVariable#wait? It needs to receive a locked mutex.
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ConditionVariable#fwait will then unlock the Mutex and put the thread to sleep.
When condvar is signaled, if this thread is first in line, it will wake up and lock the
mutex again.

The last bit of strangeness here is the while loop. An if seems more natural here
than a while. The reason for the while is a fail-safe. ConditionVariable#wait doesn't
receive any state information; it just notifies that an event happened.

If this thread wakes up, but some other thread has already removed the result it was
expecting from results, it could go forward and find nothing waiting there. So once it
reclaims the mutex, it rechecks its condition. If results is empty again, it can just go
back to waiting for the next signal.

url = results.shift
puts "You should check out #{url}"
end

comics_received += 1

This part wraps things up. Still inside the loop, it shifts the oldest element from the
Array and prints it.

Then notice that the counter is incremented using += outside the mutex. This is an

instance where that operation doesn't need protection. That variable is only visible to
one thread; hence no synchronization is needed.
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Broadcast
There's one other part of this small API we didn't cover: broadcast.
There are two different methods that can signal threads:

1. ConditionVariable#signal will wake up exactly one thread that's waiting on
this Conditionvariable.

2. ConditionVariable#broadcast will wake up all threads currently waiting on
this ConditionVariable.
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Thread-safe Data Structures

Implementing a thread-safe, blocking queue

Now that you've got an understanding of mutexes and condition variables, you can
use these concepts to build a quintessential thread-safe data structure: a blocking
queue.

This will be something you can use like this:

g = BlockingQueue.new
g.push 'thing’
g.pop #=> 'thing’

That's a pretty simple APL, but the other part of the contract is that you don't want
users of BlockingQueue to have to use a mutex. Rather, it should be internally thread-
safe.

The last requirement is that the pop operation, when called on an empty queue,
should block until something is pushed onto the queue, to avoid busy code like this:

# this is a busy loop
loop do
# constantly pop off the queue, but only
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# process non-nil results
if item = q.pop

end
end

# this is what we want

loop do
# when the queue pops something, you can be sure
# that ‘item' contains a real, intended value
item = q.pop

end

Let's start with a really simple base, working up incrementally.

# ./code/blocking queue/pre mutex.rb

class BlockingQueue
def initialize
@storage = Array.new
end

def push(item)
@storage.push(item)

end

def pop
@storage.shift
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end
end

This provides the framework for us to build on. Right away you should see a problem
here.

Given that the underlying Array isn't thread-safe, and this class doesn't use a Mutex,
the modifications happening in the push and pop methods will not protect the
underlying Array from concurrent modfications.

A Mutex will rectify this.

require 'thread’

class BlockingQueue
def initialize
@storage = Array.new
@mutex = Mutex.new
end

def push(item)
@mutex.synchronize do
@storage.push(item)
end
end

def pop
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@mutex.synchronize do
@storage.shift
end
end
end

Now the initialize method creates a Mutex local to this object. There's no need for a
global mutex here. Different instances of this class will provide their own thread-safety
guarantees. So while one instance is pushing data into its Array, there's no problem
with another instance pushing data into its Array concurrently. The issue only arises
when the concurrent modification is happening on the same instance.

So, this is looking better. But you're missing the blocking pop behaviour. Currently a
nil is returned from pop if the queue is empty. A ConditionVariable can rectify this.

require 'thread’

class BlockingQueue
def initialize
@storage = Array.new
@mutex = Mutex.new
@condvar = ConditionVariable.new
end

def push(item)

@mutex.synchronize do
@storage.push(item)
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@condvar.signal
end
end

def pop
@mutex.synchronize do
while @storage.empty?
@condvar.wait(@mutex)
end

@storage.shift
end
end
end

This gets you the behaviour you need. We have one ConditionVariable object being
shared among any threads that will be using this object instance.

When a thread calls the pop method, assuming that the underlying Array is empty, it
calls ConditionVariable#wait, putting this thread to sleep. When the push method is
called, it signals the condition variable, waking up one thread that's waiting on the
condition variable to shift that item off of the Array.

Queue, from the standard lib

Ruby's standard library ships with a class called Queue. This is the only thread-safe
data structure that ships with Ruby. It's part of the set of utilties that's loaded when
you require 'thread’.
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In this example, you came dangerously close to mirroring the implementation of
Queue!" Queue has a few more methods than your BlockingQueue, but its behaviour
regarding push and pop is exactly the same.

Queue is very useful because of its blocking behaviour. Typically, you would use a
Queue to distribute workloads to multiple threads, with one thread pushing to the
queue, and multiple threads popping. The popping threads are put to sleep until
there's some work for them to do.

require 'thread’
queue = Queue.new

producer = Thread.new do
10.times do
queue.push(Time.now.to_i)
sleep 1
end
end

consumers = []

3.times do
consumers << Thread.new do
loop do

1. https://github.com/ruby/ruby/blob/ruby_1_9_3/lib/thread.rb#L140
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unix_timestamp = queue.pop
formatted_timestamp = unix_timestamp.to_s.reverse.
gsub(/(\d\d\d)/, '\1,').reverse

puts "It's been #{formatted_timestamp} seconds since the epoch!”
end
end
end

producer. join

Array and Hash

Queue is useful, but sometimes you do need a regular ol' Array or Hash to get the job
done. Unfortunately, Ruby doesn't ship with any thread-safe Array or Hash
implementations.

The core Array and Hash classes are notthread-safe by default, nor should they be.
Thread-safety concerns would add overhead to their implementation, which would
hurt performance for single-threaded use cases.

You might be thinking: "With all of the great concurrency support available to Java on
the JVM, surely the JRuby Array and Hash are thread-safe?" They're not. For the exact
reason mentioned above, using a thread-safe data structure in a single-threaded
context would reduce performance.
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Indeed, even in a language like Java, these basic data structures aren’tthread-safe.
However, unlike Ruby, Java does have dependable, thread-safe alternatives bulit-in.

In Ruby, when you need a thread-safe Array or Hash, I suggest the thread_safe
rubygem?. This gem provides thread-safe versions under its own namespace.

* ThreadSafe: :Array can be used in place of Array.

* ThreadSafe: :Hash can be used in place of Hash.
Note that these data structures aren't re-implementations; they actually wrap the core
Array and Hash, ensuring that each method call is protected by a Mutex.
Immutable data structures

Immutable data structures are inherently thread-safe. Read more about them in the
appendix on Immutability.

2. http://github.com/headius/thread_safe
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Writing Thread-safe Code

In this chapter, I'll give you a set of guidelines to keep in mind so that the code you
write remains thread-safe.

It's presented as a list of things to watch out for. Next time you find yourself doing one
of these things, think back to this chapter. Any guideline has exceptions, but it's good
to know when you're breaking one, and why.
Let's start with the overarching principle on which this chapter is based:

Idiomatic Ruby code is most often thread-safe Ruby code.
This might be obvious, but I point it out to let you know that there aren't any special
tricks to learn. Writing good, idiomatic Ruby code will lead to thread safety most of the

time. Obviously, the definition of 'good, idiomatic Ruby code' is up for debate, but bear
with me!

Avoid mutating globals
If you'll recall from the chapter that introduced thread safety, 'concurrent

modification' is the main thing that's going to lead to safety issues in a multi-threaded
context.
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The most obvious case where this will happen is when sharing objects between
threads. Given this, global objects should stick out like a sore thumb! Global objects
are implicitly shared between all threads.

So this is inherently not thread-safe:

$counter = @

puts "Hey threads, go ahead and increment me at will!”
There are two things to keep in mind here:

1. Even globals can provide thread-safe guarantees.

2. Any time there is only one shared instance (aka. singleton), it's a global.

Let's tackle the first one first.

Even globals can provide thread-safe guarantees

That is to say, global variables don't necesarily have to be avoided. If, for some reason,
you really needthat global counter, you could do it like this:

require 'thread’

class Counter
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def initialize
@counter = 0
@mutex = Mutex.new
end

def increment
@mutex.synchronize do
@counter += 1
end
end
end

$counter = Counter.new
It's a bit more code, but that's the price you pay to ensure that data consistency is
preserved. It's worth it.
Anything where there is only one shared instance is a global

I bring this up because it's important to do more than just search for Ruby variables
beginning with a dollar sign before you can cross this item off of your list.

There are other things that fit this definition in Ruby:

* Constants
* The AST

* (Class variables/methods
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These things don't look the same as global variables, but they're accessible from
anywhere in your program, by any part of the code. Therefore, they're global too.

Just like storing a counter in a global variable (that has no thread-safety guarantee) is
not safe, the same is true if you store that counter in a class variable or constant. So,
look for those instances too.

This is OK, because it doesn't modify global state.

class RainyCloudFactory
def self.generate
cloud = Cloud.new
cloud.rain!

cloud
end
end

This is not OK, because it does modify global state, in this case, a class variable.

class RainyCloudFactory
def self.generate

cloud = Cloud.new

@@clouds << cloud

cloud

end
end
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A slightly more nefarious example is the AST. By this I'm referring to the current set of
program instructions that comprise your program. Ruby, being such a dynamic
language, allows you to change this at runtime. I don't imagine this would be a
common problem, but I saw it come up as an issue with the kaminari' rubygem. Some
part of the code was defining a method dynamically, then calling alias_method with
that method, then removing it.

There's only one AST, shared between all active threads, so you can imagine how this
played out in a multi-threaded environment. One thread defined the method, then
aliased it. Another thread then took over and defined its version of the method,
overwriting the one that was already in place. The original thread then went and
removed that method. When the second thread went to alias the method, it was no
longer there. Boom. NoMethodError.

Again, this has to be a rare example, but it's good to keep in mind that modifying the
AST at runtime is almost always a bad idea, especially when multiple threads are
involved. When I say 'runtime’, I mean during the course of the lifecycle of the
application. In other words, it's expected that the AST will be modified at startup time,
most Ruby libraries depend on this behaviour in some way. However, in the case of a
Rails application, once it's been initialized, changes to the AST shouldn't happen at
runtime, just as it's rare to require new files in the midst of a controller action.

So, if you're just reading from a global, that's fine. If there's a well-defined
understanding of how to use a global, and it's protected from concurrent modification,
that's fine. Rails.logger comes to mind as a good example of this. But if a global

1. https://github.com/amatsuda/kaminari/issues/214

wwrt | 118


https://github.com/amatsuda/kaminari/issues/214

seems like a convenient place to stash a shared object, make sure you think twice
about that. It might not be the best place for it.

Create more objects, rather than sharing one

But sometimes you just need that global object. You really can't avoid it. This is
especially problematic when the thread safety of that object is questionable.

The most common example of this is a network connection. I'm not thinking of a one-
off HTTP request, but a long-lived connection to a database or external service.

This is problematic because a long-lived connection is a stateful connection. Typically,
when talking to a database, your code will make a request, then wait for a response.
The underlying socket has no notion of the state of the program, and the thread
scheduler provides no guarantees about which thread will receive the data first.

So, this leaves us in a situation where the database client library needs to jump
through a lot of hoops to make sure that the right thread receives the right result, or...

The simpler solution is to create more connections. There are two useful concepts that
you could use for this:

1. Thread-locals

2. Connection pools
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Thread-locals

This name is wild with contradiction, depending on your perspective. A thread-local
lets you define a variable that is global to the scope of the current thread. In
other words, it's a global variable that is locally scoped on a per-thread basis.

Here's how you might use it to provide each thread with its own connection to a Redis
database:

# Instead of

$redis = Redis.new

# use

Thread.current[:redis] = Redis.new

Then you can use Thread.current[:redis] wherever you would otherwise have used
$redis. This is a bit hard to grok the first time. Even though you only call Redis.new in
one place, each thread will execute it independently. So, if your program is running N
threads, it will open N connections to Redis.

This example showed a Redis connection, but this same concept can be applied to
other objects, too. It's perfectly acceptable to tell users of your API that they should
create one object for each thread, rather than trying to write difficult, thread-safe code
that will increase your maintainenace costs.

This N:N connection mapping is fine for small numbers of threads, but gets out of

hand when the number of threads starts to increase. For connections, a pool is often a
better abstraction.
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Resource pools

Going back to the Redis example, if you have N threads, you could use a pool of M
connections to share among those threads, where M is less than N. This still ensures
that your threads aren't sharing a single connection, but doesn't require each
thread to have its own.

A pool object will open a number of connections, or in the more general sense, may
allocate a number of any kind of resource that needs to be shared among threads.
When a thread wants to make use of a connection, it asks the pool to check out a
connection. The pool is responsible for keeping track of which connections are
checked out and which are available, preserving thread safety. When the thread is
done, it checks the connection back in to the pool.

Implementing a connection pool is a good exercise in thread-safe programming, you'll
probably need to make use of both thread-locals and mutexes to do it safely. The
connection_pool rubygem provides a nice, bare-bones implementation that's a good
study in this area.?

Avoid lazy loading

A common idiom in Ruby on Rails applications is to lazily load constants at runtime,
using something similar to Ruby's autoload.

2. http://github.com/mperham/connection_pool
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For instance, if the Geocoder constant has not yet been loaded, the first time your
application tries to execute Geocoder.geocode(request.remote_ip), Rails will look for
a file named geocoder.rb, require it, then return to your code.

This is a bad idea in the presence of multiple threads. The simple reason is that
autoload in MRI is notthread-safe’. It is thread-safe in recent versions of JRuby, but
the best practice is simply to eager load files before spawning worker threads.

This is done implicitly in Rails 4+, and can be enabled in Rails 3.x using the
config.threadsafe!“ configuration setting.

Prefer data structures over mutexes

Mutexes are notoriously hard to use correctly. For better or worse, you have a lot of
things to decide when using a mutex.

* How coarse or fine should this mutex be?
* Which lines of code need to be in the critical section?
+ Is a deadlock possible here?

* Do I need a per-instance mutex? Or a global one?

3. http://bugs.ruby-lang.org/issues/921
4. http://apidock.com/rails/Rails/Application/Configuration/threadsafe%:21
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This is just a sampling of questions you need to answer when you decide to use a
mutex. For a programmer familiar with mutexes and with deep knowledge of the
problem domain, these questions may be easy to answer.

However, in many cases, they're not. Sometimes the rules of a system are not well-
defined, programmers working on the project are not fluent with the usage of
mutexes, or a plethora of other reasons.

Using a data structure removes a lot of these concerns. Rather than worrying about
where to put the mutex, whether or not it can deadlock, you simply don't need to
create any mutexes in your code.

By leaning on a data structure, you remove the burden of correct synchronization
from your code and depend on the semantics of the data structure to keep things
consistent.

This only works if you choose not to share objects between threads directly. Rather
than letting threads access shared objects and implementing the necessary
synchronization, you pass shared objects through data structures. This ensures that
only one thread could mutate an object at any given time.

Finding bugs

There may be times where your program is exhibiting strange behaviour. Despite
following all the best practices, a thread-safety bug may have slipped in, or this bug
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may be traced to someone else's code. Unfortunately, this kind of debugging can often
feel like looking for a needle in a haystack.

Like most bugs, if you can reproduce the issue, you can almost certainly track it down
and fix it. However, some thread-safety issues may appear in production under heavy
load, but can't be reproduced locally. In this case, there's no better solution than
grokking the code.

Now you've seen common problems, notably global references. That's the best place
to start. Look at the code and assume that 2 threads will be accessing it
simulatneously. Step through the possible scenarios. It can be helpful to jot these
things down somewhere. With some practice, this process becomes more natural and
these patterns will jump out at you more readily.
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Thread-safety on Rails

Since many of us Rubyists work on Rails applications on a regular basis, you should
know how to keep your Rails apps thread-safe.

It's rare that you would spawn threads inside your application logic, but if you're using
a multi-threaded web server (like Puma') or a multi-threaded background job
processor (like Sidekig?), then your application is running in a multi-threaded context.

The last chapter said that good, idiomatic Ruby code is usually thread-safe Ruby code.
The same goes for Rails applications. If you stick to Rails conventions, and write
idiomatic Rails code, your Rails application will be thread-safe.

Gem dependencies

Outside of your application code, you'll have to make sure that any gems you depend
on are thread-safe. Since there's no way to programmatically verify thread safety,
you'll have to do your research. The majority of gems in the community are thread-
safe, but check the bug tracker of any gem you're thinking of adding, just to be sure.

1. http://puma.io
2. http://sidekiq.org

wwrt | 125


http://puma.io
http:///sidekiq.org

The request is the boundary

The most important bit of information you need in order to understand thread safety
in web applications is how threads are being used by the underlying web server or
background job processor.

For the web server, the web request is the dividing line between threads. By this I
mean that a multi-threaded web server will process each request with a separate
thread.

If you know that each request is handled by a separate thread, then the path to thread
safety is clear: don't share objects between requests. This will ensure that no
objects are shared between threads.

To put it even more simply, make sure that each controller action creates the objects
that it needs to work with, rather than sharing them between requests via a global
reference.

A good example of this is something like a User.current reference. All Rails
applications have some way of referring to the current user in a controller action.
Typically this is done using an instance variable. This is safe because each request
creates its own instance of the controller stack; variables aren't shared. However, if
you store a User object in User.current, that's a class variable that /s shared among
threads.

So one thread will assign a user to User.current, then another thread can come
along and overwrite it. The first thread expects to find its user reference still there
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when performing database lookups, but it's been overwritte. Now your users end up
seeing each others data instead of their own.

If you really need a global reference, follow the guidelines from the last chapter. Try
using a thread-local, or else a thread-aware object that will preserve data correctness.

The same heuristic is applicable to a background job processor. Each job will be
handled by a separate thread. A thread may process multiple jobs in its lifetime, but a
job will only be processed by a single thread in its lifecycle.

Again, the path to thread safety is clear: create the necessary objects that you need in
the body of the job, rather than sharing any global state.

Following these guidelines will ensure that your Rails application code has no safety
issues in a multi-threaded context.
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Wrap Your Threads in an Abstraction

Up until now, all of the example code in the book has been of a trivial nature, stuff
that you might write in a simple script to accomplish a task on your local machine, but
probably wouldn't imagine putting in a production situation. Now I want to turn you
toward the real world.

This chapter will help you put threads at the right level of abstraction in your code,
rather than having them mixed up alongside your domain logic.

Single level of abstraction

In the book Clean Code," Robert Martin laid out principles for improving code
readability and maintanability. One of the principles that's relevant to this discussion
is "one level of abstraction per function."It states that all code in a given function
should be at the same level of abstraction; i.e., high-level code and low-level code
don't mix well.

What constitutes high-level code and low-level code is certainly up for debate, but I
would label code that works with threads, mutexes, and the like as low-level code. It is
almost certainly a lower level of abstraction than your domain logic.

1. http://amzn.com/0132350882
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Let me use an analogy to make my point.

When you use a database adapter (like mysql2 or redis-rb), do you ever see the
Socket constant? No. All of these adapters are using a socket internally for
communication, but that's at a different level of abstraction than writing SQL
statements.

The database adapters extract out the complexities of working with sockets, handing
network exceptions, buffering, etc. The same is true when working with threads.

Threads are also a low-level concept with its own complexities. It's something
provided by your operating system, and is not likely part of the main domain logic of
your application.

Given this, it's best to wrap threads in an abstraction where possible. In certain
circumstances your domain logic might need direct access to a Mutex or might need to
spawn threads very deliberately. This isn't a hard and fast rule, just a guideline.

Let's start with a simple case. Way back at the beginning of the book we looked at a
trivial FileUploader class. Here it is, to refresh your memory.

require 'thread’

class FileUploader
def initialize(files)
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@files = files
end

def upload
threads = []

@files.each do |(filename, file_data)|
threads << Thread.new {
status = upload_to_s3(filename, file_data)
results << status

3

end

threads.each(&: join)
end

def results
@results ||= Queue.new
end

def upload_to_s3(filename, file)
# omitted

end
end

uploader = FileUploader.new('boots.png’' => 'xpretend png data*', 'shirts.png' => 'xpretend png datax')
uploader.upload

puts uploader.results.size
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I even made a case way back at the start of the book that the Thread.new here sticks
out like a sore thumb. It's quite obviously at a different level of abstraction than the

rest of the code. Let's extract that to somewhere else so that this code can, once again,
focus on its intent.

n code /sn t

ppets/concurrent each.rb

module Enumerable
def concurrent_each
threads = []

each do |element|
threads << Thread.new {
yield element
3

end

threads.each(&: join)
end
end

This is a simple wrapper around Enumerable#feach that will spawn a thread for each
element being iterated over. It wouldn't be wise to use this code in production yet
because it has no upper bound on the number of threads it will spawn. Give it an
Array with 100,000 elements and it will attempt to spawn 100,000 threads!
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A better approach here would be to spawn a fixed-size pool of threads, like
Pumal(#puma-s-thread-pool-implementation) does, then keep passing work to those
threads as they can handle it.

Now we can rewrite the FileUploader class to make use of this new method, still
preserving its behaviour, but no longer mixing levels of abstraction.

=+

require 'thread’
require_relative 'concurrent_each’

class FileUploader
attr_reader :results

def initialize(files)
@files = files
@results = Queue.new
end

def upload
@files.concurrent_each do |(filename, file_data)]|
status = upload_to_s3(filename, file_data)
@results << status
end
end

def upload_to_s3(filename, file)
# omitted
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end
end

uploader = FileUploader.new('boots.png’ => '*pretend png data*', 'shirts.png’' => '*pretend png data*')

uploader.upload

puts uploader.results.size

This is much easier to grok at a glance, with the concurrency details handled now by
ConcurrentEach.

Actor model

In some cases, it will make sense for you to write your own simple abstractions on top
of your multi-threaded code, as in the above example. In other cases, especially when
multi-threading concerns are at the core of your program (think servers, networking,
etc.), you'll get more benefit from a more mature abstraction.

The Actor model is a well-known and proven technique for doing multi-threaded
concurrency. As an abstraction, it's much more mature than the simple map you did in
the last section.

At a high level, an Actor is a long-lived 'entity' that communicates by sending
messages. When I say long-lived entity, I'm talking about a long-running thread, not
something that's spawned ad-hoc. In the Actor model, each Actor has an 'address’. If
you know the address of an Actor, you can send it a message.
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These messages go to the Actor's mailbox, where they're processed asynchronously
when the Actor gets around to it.

This describes the core of the Actor model at a high level, but let's start talking about
the implementation. There's obviously more than one way that this kind of system can
be implemented. Indeed, there are several implementations available in the Ruby
community?. For the rest of this chapter, we'll be looking at Celluloid.*

What sets Celluloid apart is that it takes this conceptual idea of the Actor model and
marries it to Ruby's object model. Let's see the basic operations of a Celluloid actor,
and how they map to the overview I gave above.

require 'celluloid/autostart’
require 'net/http’

class XKCDFetcher
include Celluloid

def next

response = Net::HTTP.get_response('dynamic.xkcd.com', '/random/comic/")
random_comic_url = response['lLocation’]

random_comic_url

2. Besides Celluloid, rubinius-actor is probably the second most used.
3. http://celluloid.io
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end
end

The only real detail that separates this class from a regular Ruby class is the inclusion
of the Celluloid module.

class XKCDFetcher
include Celluloid

Including the Celluloid module into any Ruby class will turn instances of that class
into full-fledged Celluloid actors. That's all it takes.

From now on, any time that a new instance of XKCDFetcher is created, it will be
wrapped by a Celluloid actor. Each Celluloid actor is housed by a separate thread, one
thread per actor.

When you create a new actor, you immediately know its 'address’'. So long as you hold
a reference to that object, you can send it messages. In Celluloid, sending messages to
an actor equates to calling methods on an object. However, Celluloid does preserve
the behaviour of regular method calls, so it still feels like a regular Ruby object.

# this spawns a new thread containing a Celluloid actor
fetcher = XKCDFetcher.new

# these behave like regular method calls
fetcher.object_id
fetcher.inspect

# this will fire the ‘next' method without
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# waiting for its result
fetcher.async.next
fetcher.async.next

Regular method calls are sent to the actor's mailbox but, behind the scenes, Celluloid
will block the caller until it receives the result, just like a regular method call.

However, Celluloid also allows you to send a message to the actor's mailbox without
waiting for the result. You can see this in the example above using the async syntax. In
this way, you can asynchronously fire off some work, then continue execution.

The async is good if you don't care about the result, but what if you want to fire off a
method asynchronously and get its result? That's what Celluloid futures accomplish,
and that rounds out this code example.

XKCDFetcher.new
futures = []

fetcher

10.times do
futures << fetcher.future.next
end

futures.each do |future|
puts "You should check out #{future.value}"”
end

This example begins by spawning a new actor. Then the next method is called 10
times using the future syntax. First, call the future method on an actor, then the
message you want to send, which must correspond to a public method on the actor.
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Celluloid kicks off that method asynchronously and returns you a Celluloid: :Future
object.

Calling #value on that future object will block until the value has been computed. In
this example, 10 fetches to xkcd are kicked off asynchronously, then the results are all
collected using the call to value.

This is the basic idea behind Celluloid. It actually has a lot more features,* but this
concept of 'objects as actors' is really at its core.

Recall, for any class that includes the Celluloid module, instances of that class will
each be independent actors. Actors are independent by virtue of being in their own
thread, so there's one thread per actor. Passing a message to an actor is as simple as
calling one of its public methods. The behaviour associated with any particular
message is simply the body of the method.

Celluloid is a great solution to concurrency that puts the abstraction at the right level
and wraps up a lot of best practices. The next chapter will take a deeper look at real-
world Celluloid project.

4. Seriously, it has a lot of useful features built-in. The wiki has great coverage of what it offers.
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How Sidekig Uses Celluloid

Sidekiq is a multi-threaded background job processing system backed by Redis. It's
multi-threaded, but if you take a close look through the source code, you won't see
many of the constructs you've learned in this book. No Thread.new or
Mutex#synchonize. This is because all of Sidekiq's multi-threaded processing is
implemented on top of Celluloid.

This is for good reason. Mike Perham, author of Sidekiq, suggests:

As soon as you introduce the Thread constant, you've probably just
introduced 5 new bugs into your code.

Sidekiq is a system composed of Celluloid actors. At the top level, there's a Manager
actor that holds the state of the whole system and mediates between the collaborator
actors. The collaborator actors are the Fetcher, which fetches new jobs from Redis,
and the Processors, which perform the actual work of the jobs.
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This is a rough sketch of Sidekiq's actor architecture. Specifically, we're going to focus
on how the fetch, assign, and process messages are handled.
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Into the source

Normally, when walking through code like this, I would focus on a particular class or a
particular method. But given the nature of Sidekiq's architecture, and that of most
actor-based systems, the building block isn't classes or methods, it's messages. So the
focus will be on messages. That being said, in a Celluloid actor, messages and their
associated behaviour are defined as Ruby methods, so you wil/ be looking at methods,
but they won't be used strictly in the traditional sense.

Our journey starts in the Manager actor.

fetch

Once the manager has been initialized, it's started with the start method.

def start
@ready.each { dispatch }
end

def dispatch
return if stopped?
# This is a safety check to ensure we haven't leaked
# processors somehow.
raise "BUG: No processors, cannot continue!” if @ready.empty? && @busy.empty?
raise "No ready processor!?” if @ready.empty?
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@fetcher.async.fetch
end

In the Manager, the eready variable holds references to the Processor actors that are
ready to process jobs. So it calls the dispatch method once for each idle Processor.
The dispatch method does some housekeeping at the beginning, but the last line is
the important one.

The async method used on the last line will send the fetch message to the @fetcher
actor and will not wait for the return value. It's essentially is a fire-and-forget call
where the message is sent, but the Manager doesn't wait for the response.

Since the fetch message is asynchronous, it can be sent multiple times and queued in
the Fetcher actor's mailbox until it can process the backlog. This is expected behaviour
for Sidekiq. For instance, with 25 Processor actors, the fetch message will be sent 25
times. The Fetcher actor will process each fetch in turn, as new jobs get pushed into
Redis.

This is an excerpt from the Fetcher#fetch method.

work = @strategy.retrieve_work

if work
@mgr.async.assign(work)
else
after(@) { fetch }
end
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The Fetcher first tries to retrieve a unit of work. You can see that if it doesn't retrieve
any work, it calls itself again. This, again, points to the asynchronous nature of sending
messages. The Manager sent the fetch message, but since it's not waiting for a return
value, the Fetcher is free to take as long as necessary before sending a message back
to the Manager.

When it's finally able to retrieve work, it asynchronously sends the assign message to
the Manager, passing along the unit of work.

assign
Here's the Manager#assign method that receives that unit of work.

def assign(work)
watchdog("Manager#assign died”) do
if stopped?
# Race condition between Manager#stop if Fetcher
# is blocked on redis and gets a message after
# all the ready Processors have been stopped.
# Push the message back to redis.
work.requeue
else
processor = @ready.pop
@in_progress[processor.object_id] = work
@busy << processor
processor.async.process(work)
end
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end
end

This method, too, has some housekeeping at the beginning, such as is real-world code
after all. The else block contains the real business logic.

First, the Manager grabs the next available Processor, then keeps tracks of its status
appropriately in its internal data structures.

Notice that the Manager is using plain Ruby arrays here with @ready and @busy. Even
though they're used in a multi-threaded context, there's no thread-safety concern
here. This Manager actor lives in its own thread, it own these instance variables, and
doesn't share them with other actors. Since the variables are contained within this
thread, there can be no issue with multiple threads interacting with them
concurrently.

On the last line there's another asynchronous message sent, the chosen Processor
receives the process message along with the unit of work. Again, this will be a fire-
and-forget style of message, with the Manager not waiting for a response. Instead, the
Processor will perform the work, then send a message back to the Manager when it's
finished.

I won't share the definition of the process method because it's almost entirely

focused on the actual performing of the job, there's very little fodder in terms of multi-
threading primitives.
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Wrap-up

You saw how Sidekiq handled the fetch, assign, and process messages. This
paradigm should feel a bit different from traditional Ruby code. In traditional Ruby
code you might achieve the same behaviour with something like the following:

class Manager
def dispatch
loop do
work = @fetcher.fetch

result = processor_pool.process(work)
log_result(result)
end
end
# ...
end

The most obvious difference I see between the Sidekiq codebase and a more
traditional Ruby codebase is the lack of dependence upon return values. In my
example above there's one method that calls a bunch of others, collecting return
values and passing them around.

When sending messages in Sidekiq, return values are seldom used. Instead, when an
actor sends a message, they expect a message to be sent back to them in return. This
keeps things asynchronous. Besides this stylistic difference, the Sidekiq codebase is
remarkably free of threading primitives. This is due to how well Celluloid respects
Ruby's object system, as we explore in the last chapter.
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Sidekiq is a great example of how simple it can be to integrate multi-threaded
concurrency, via actors, with your business logic.
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Puma's Thread Pool Implementation

Puma' is a concurrent web server for Rack apps that uses multiple threads for
concurrency. Other popular web servers in the community are backed by multiple
processes, or by a single-threaded event loop, so Puma is really the front-runner when
it comes to multi-threaded servers.

At Puma's multi-threaded core is a thread pool implementation. I'm going to walk you
through the main threaded logic so you can see how a real-world, battle-tested project
handles things.

A what now?

Puma's thread pool is responsible for spawning the worker threads and feeding them
work. The thread pool wraps up all of the multi-threaded concerns so that the rest of
the server is just concerned with networking and the actual domain logic.

The Puma: : ThreadPool is actually a totally generic class, not Puma specific. This makes
it a good study, and it could potentially be extracted into something generally useful.

Once initialized, the pool is responsible for receiving work and feeding it to an
available worker thread. The ThreadPool also has an auto-trimming feature, whereby

1. http://puma.io
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the number of active threads is kept to a minimum, but more threads can be spawned
during times of high load. Afterwards, the thread pool would be trimmed down to the
minimum again. Note: I edited the example methods slightly to remove this logic, as it
didn't add anything to the discussion.

The whole thing

Here's the whole implementation of the Puma: : ThreadPool#spawn_thread method.
This gets called once for each worker thread to be spawned for the pool. I'll walk
through it section by section.

Just for reference, one instance of this class will spawn many threads. Much like in our
examples, instance variables are shared among multiple threads.

def spawn_thread
@spawned += 1

th = Thread.new do
todo = @todo
block = @block
mutex =
cond = @cond

@mutex
extra = @extra.map { |i| i.new }
while true

work = nil

continue = true
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mutex.synchronize do
while todo.empty?
if @shutdown
continue = false
break
end

@waiting += 1

cond.wait mutex

@waiting -= 1
end

work = todo.pop if continue
end

break unless continue

block.call(work, =*extra)
end

mutex.synchronize do
@spawned -= 1
@workers.delete th
end
end

@workers << th

th
end
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In bits

Now you'll see it bit by bit.

def spawn_thread
@spawned += 1

I want to highlight this very first line in the method because it illustrates an important
point that I mentioned in the chapter on Mutexes. This @spawned instance variable is
shared among all the active threads and, as you know, this += operation is not thread-
safe! From what we can see, there's no mutex being used. What gives?

In the source file, there's this very important comment right above this method:

# Must be called with @mutex held!

This is a great example of mutexes being opt-in. This method must be called with the
shared emutex held, but it doesn't do any internal checking, so it would be possible to
call this method without a mutex, potentially corrupting the value of @spawned.

Just a good reminder that mutexes only work if callers respect the implicit contract it
offers. Moving on.

th = Thread.new do
todo = @todo
block = @block
mutex = @mutex
cond = @cond
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extra = @extra.map { |i| i.new }

The first line here spawns a thread that will become part of the pool. This is only part
of the block that's passed to Thread.new.

At first glance, this bit of code looks like it might be assigning local variables so as not
to share references with other threads. If each thread needed to re-assign its mutex,
for instance, it would want to switch to a local reference so as not to affect other
threads.

But the git blame for this bit of code suggests otherwise.? Since this is a hot code path
for Puma, using local variables will slightly improve performance over using instance
variables. The references are never re-assigned by the individual threads, and this
does nothing to prevent the threads sharing references. In this case, the threads must
share the reference to the mutex and condition variable in order for their guarantees
to hold.

These kinds of optimizations are common for web servers, but rare for application
logic.

while true

work = nil
continue = true

Now we get into the real meat of this method.

2. https://github.com/puma/puma/commit/fb4e23d628ad77c7978b67625d0da0e5b41fd 124
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The first line enters an endless loop. So this thread will execute forever, until it hits its
exit condition further down. We'll see the work and continue variables further down.
They're just initialized here.

mutex.synchronize do
while todo.empty?
if @shutdown
continue = false
break
end

@waiting += 1

cond.wait mutex

@waiting -= 1
end

work = todo.pop if continue
end

OK, that's a big paste. I'll highlight some of the outer constructs, then re-focus on the
inner stuff.

First, all of the code in this block happens inside of the mutex.synchronize call. So
other threads have to wait while the current thread executes this block.

while todo.empty?
if @shutdown
continue = false
break
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end

@waiting += 1

cond.wait mutex

@waiting -= 1
end

This little block of code came straight out of the one earlier, you're still inside the
mutex here. This block only runs if todo is empty. todo is a shared array that holds
work to be done. If it's empty, that means there's not currently any work to do.

If there's no work to do, this worker thread will check to see if it should shut down. In
that case it will set that continue variable to false and break out of this inner while
loop.

If it doesn't need to shut down, things get more interesting.

First, it increments a global counter saying that it's going to wait. This operation is safe
because the shared mutex is still locked here. Next, it waits on the shared condition
variable. Remember that this releases the mutex and puts the current thread to sleep.
It won't be woken up again until there's some work to do. Since it released the shared
mutex, another thread can go through the same routine.

Also notice that a while loop is used as the outer construct here, rather than an if
statement. Remember that when once signaled by a condition variable, the condition
should be re-checked to ensure that another thread hasn't already processed the
work.
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Once enough work arrives, this thread will get woken up. As part of being signaled by
the condition variable, it will re-acquire the shared mutex, which once again makes it
safe to decrement the global counter.

work = todo.pop if continue

Now the thread has been awoken, re-acquired the mutex, and found todo to contain
some work, it pops the unit of work from todo. This is the last bit of code still inside
the mutex.synchronize block.

break unless continue

block.call(work, =*extra)
end

This little bit of code is outside the mutex.synchronize block, but now outside the
while loop around the condition variable. If it's time to shut down, this thread will
need to break out of its outer infinite loop. This accomplishes that.

If it's not time to shut down, then this worker thread can process the work to do. In
this case, it simply calls the shared block with the work object that it received. The
block is passed in to the constructor and is the block of code that each worker thread
will perform.

mutex.synchronize do

@spawned -= 1
@workers.delete th
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end
end

The body of the thread ends with a little housekeeping. Once the thread leaves its
infinite loop, it needs to re-acquire the mutex to remove its reference from some
shared variables.

@workers << th

th

The last two lines are outside the scope of the block passed to Thread.new. So they'll
execute immediately after the thread is spawned. And remember, even here the
mutex is held by the caller of this method!

Here the current thread is added to @workers, then returned.

Wrap-up

This implementation nicely illustrates many of the concepts that were covered in this
book. And as far as abstractions go, Puma does a superb job of isolating the
concurrency-primitive logic from the actual domain logic of the server. I definitely
reccomend checking out how the ThreadPool is used in Puma, and the lack of
threading primitives through the rest of the codebase.
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Simiarly, I encourage you to check out the other methods in the ThreadPool class,
tracing the flow from initialization, to work units being added to the thread pool, to
work units being processed from the thread pool, all the way to shutdown.
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Closing

Working with concurrency is all about organization.

If you want to take advantage of 100% of what your system offers, you need
concurrency. If you have a single-threaded program, and aren't using some other form
of concurrency (like processes), then you're only using a fraction of what your system
offers.

Our job is to organize our code such that the system can run it in the most efficient
way possible. Introducing multiple threads is one way to do this. But then we need to
make sure that our code is organized to preserve thread safety.

Working with concurrency is about balancing these elements of organization:
organizing our code so that it can take maximum advantage of system resources,
while still preserving the underlying data.

Part of the point I'm making is that concurrency isn't something that should be used
everywhere, not in every program, and not in every part of your application. Part of
organizing our code is to decide where to apply concurrency, and where to restrict it.

The trick with multi-threaded programming is to strike the balance between firing on

all cylinders all of the time, and utilizing more than a fraction of what your system has
to offer.
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Both of these extremes can be painful, so we should seek the place in the middle. The
most succint set of rules I've seen to find this middle ground are laid out eloquently
on the JRuby wiki.’

The safest path to concurrency:

1. Don'tdoit.

2. If you must do it, don't share data across threads.

3. If you must share data across threads, don't share mutable data.

4. If you must share mutable data across threads, synchronize access to that

data.

If you stick to these rules, you'll strike that balance.

Ruby concurrency doesn't suck

I think there's a general vibe in the programming community that Ruby isn't a suitable
environment for concurrency. I'll certainly agree that this was the case in the past.

When MRI was the only Ruby implementation, using green threads instead of native
threads along with a GIL, Ruby did not have a good story when it came to concurrency;
the only option was to start more processes. Indeed, that's still the approach favoured
by a lot of Ruby applications to this day, and it does work.

1. https://github.com/jruby/jruby/wiki/Concurrency-in-jruby#wiki-concurrency_basics
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But Ruby's concurrency story is much better today. Threading on all of the major Ruby
implementations is backed by native threads. While MRI still has a GIL, there are
alternatives (JRuby and Rubinius) that support true parallel threading.

The Ruby language still doesn't ship with much support for multi-threaded
concurrency, but there are a growing number of options available in the community.
Celluloid is a great example of this. It simplifies concurrent programming, while really
embracing the constructs of the language. Writing programs using Thread.new and
Mutex#tsynchronize can be very challenging and lead to poorly factored Ruby code.
The same program written using Celluloid can provide the same concurrency, but feel
more like idiomatic Ruby.

As a language, Ruby could provide better primitives to support multi-threaded
concurrency.” But even today, Ruby doesn't suck for concurrency. And I think Ruby's
concurrent future looks even brighter.

2. Brian Shirai, from Rubinius, made some great points about this when I interviewed him.
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Appendix: Atomic Compare-and-set
Operations

Note on appendices: these chapters are included as appendices because these
techniques, for all their benefits, don't yet have support from Ruby core.

I didn't mention it previously, but there are really two camps in the multi-threaded
world. It's not as though these two camps oppose each other, but there are very
different ways to structure concurrent programs.

The 'old guard' tends to lean on the synchronization mechanisms that you've already
seen. That means lots of mutexes and condition variables. These methods are tried
and true, but there are obvious drawbacks. Things like deadlocks and mutex
bottlenecks are just two examples.

The newer camp is emerging from academia, offering a different approach to writing
concurrent programs. Although many of these concepts are still theoretical in nature,
many of them are seeing more widespread use and experimentation. These are things
like lockless, lock-free, and wait-free data structures, immutable data structures,
software transactional memory, and things of this nature.

Covering all of these emerging topics would require a book in and of itself, and many

of them are still stabilizing as they see real-world usage. In this chapter I'll look at
atomic compare-and-set (CAS) operations, which is really the building block underlying
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these newer approaches. In the next chapter I'll give more coverage to immutability
and how it relates to thread safety.

Overview
Here's a brief outline of how the CAS operation works.

In Ruby, you first create an Atomic instance that holds a value.

item = Atomic.new('value')

This comes from the 'atomic’ rubygem. This gem provides a consistent Ruby API for
CAS operations across MRI, JRuby, and Rubinius’. It's great!

The Atomic API does provide a higher-level, Ruby-ish API, but the lower-level
workhorse method is Atomic#compare_and_set(old, new).You pass it the value that
you thinkit currently holds and the value you want to set it to.

If the current value /s the one you expected it to be, it's updated to your new value.
Otherwise, it returns false. At this point you have to decide whether to retry the
operation or just continue on.

This compare-and-set operation is hardware-supported and provides a guarantee you
wouldn't have otherwise. In the next section, I'll illustrate this with code. In a situation
where you want to read a value, modify it, and then update it, it's possible to read a

1. Rubinius is the only implementation that includes a native Ruby implementation. It's called AtomicReference.
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value, then have another thread update the value before you can, leading to a
situation where your update can overwrite the work done by another thread.

Code-driven example

A few chapters back, you had a quick look at the += operator. Although this is an
operator in Ruby, it offers no thread-safety guarantees since it will be expanded to at
least 3 operations under the hood. Let's review that.

When you use the += operator like this: @counter += 1, Ruby must do at least the
following:

1. Get the current value of @counter.
2. Increment the retrieved value by 1.

3. Assign the new value back to @counter.

It looks roughly like this in code:

@counter = @

# Get the current value of ‘@counter’.
current_value = @counter

# Increment the retrieved value by 1.
new_value = current_value + 1
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# Assign the new value back to ‘@counter®.
@counter = new_value

You probably wouldn't write this code, but this illustrates the underlying steps
involved.

The problem with this multi-step operation is that it's not atomic. It's possible that two
threads race past step 1 before either gets to step 3. In that case, both threads would
think the current_value is 0 and assign the value of 1 to @counter in step 3. A correct
implementation should end up with @counter equal to 2 with two threads.

The old guard would solve this problem with a mutex:

@counter = @
@mutex = Mutex.new

@mutex.synchronize do
current_value = @counter
new_value = current_value + 1
@counter = new_value

end

This implementation would ensure only one thread can perform this multi-step

operation at a time, preserving correctness by limiting the ability of things to happen
in parallel. It's safe to use with multiple threads.
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This problem can be solved a different way using CAS. It would look something like
this:

require 'atomic'
@counter = Atomic.new(0)

loop do
current_value = @counter.value
new_value = current_value + 1

if @counter.compare_and_set(current_value, new_value)
break
end
end

This version is a bit more code and uses more control structures. However, it doesn't
use any locks and is still safe to use with multiple threads. I'll walk you through the
logic here, then show you a shorthand to make things much more readable. Since this
is Ruby, the Atomic class does provide a much more elegant API; however, the set of

primitive operations you're seeing here should be possible in any environment that
supports CAS.

require 'atomic’

@counter = Atomic.new(0Q)
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Here, you wrap the value that you want to perform CAS operations on inside of an
Atomic object. In this case, our counter value, starting at 0, is wrapped by an Atomic.

loop do
current_value = @counter.value
new_value = current_value + 1

Here's the main part of the logic. First you enter a loop. The reason for this is so that
the whole operation is retried if the compare_and_set fails. I'll repeat that again: the
whole operation is retried if the compare_and_set fails. That means that your
operation must be idempotent. In other words, it can be run multiple times without
having any additional effects outside of its scope. If something is idempotent, there's
no harm in doing it multiple times, which is exactly what could happen in this case!

Next you grab the current value by using Atomic#value, then calculate the new value
by adding 1 to it.

if @counter.compare_and_set(current_value, new_value)
break
end
end

Now for the punch line. You call the compare_and_set method; the first argument is
what you expect the value to be; the second argument is the new value that you want
to set it to. If the underlying value has not changed, the update will succeed, returning
true. In this case nothing needs to be retried so you break out of the loop.
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Now for the failure case. Between reading the value into current_value and setting
the new value here, it's possible that another thread has updated this variable. In that
case, the operation would fail. The first argument would not be equal to the real
current value. In that case, this method returns false and the loop is restarted.

Notice that there's no locking involved. With the happy path, when the update
succeeds, there's no locking that needs to be done. If the update fails, there's a
different cost to be paid: the whole operation needs to be retried.

What's the point of this? The point is that for some kinds of operations, locking is very
expensive. Since only one thread can be in a critical section at any given time, all other
threads need to be put to sleep to wait their turn when they try to execute the same
code path. Using a CAS operation, all of the threads remain active. If the cost of
retrying the operation is cheap, or rare, it may be much less expensive than using a
lock. All this is to say that sometimes a lockless algorithm is much faster than a locking
variant, but other times this isn't the case.

Let's compare the running times of the locking and lock-free implementations of the
+= operation. But first, I want to show you the Ruby sugar that Atomic provides.

Since this construct of using a loop to retry operations is so common, Atomic supports

an update method that encapsulates this. We can re-write our previous CAS example
like so:
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require 'atomic'’
@counter = Atomic.new(0)

@counter.update { |current_value]
current_value + 1

3

You pass a block to the update method. Under the covers it will fetch the current
value, then call this block, passing the current value as a block variable. The result of
evaluating the block is taken to be the new value you want to set, which is then used
for the compare_and_set operation. If the operation fails, the block is called again,
passing in the updated current value. As I mentioned, it's important that this block is
idempotent, as it may be called multiple times.

I think we can all agree that this version is more elegant, with more of a Ruby-ish feel
to the API. On to the benchmark.

Benchmark

I simply took the locking and lockless variants of the counters presented in this
chapter and benchmarked them against each other. In this simple benchmark, I had
100 threads each incrementing the counter 10,000 times. To be sure, this is an
abnormally high workload for a counter, normally the threads would also be engaged
in other behaviour. Nonetheless, here is a plot of the results from running
code/benhcmarks/locking_vs_lockless.rb.
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As expected, the results differ wildly between implementations. With JRuby, the
locking variant was consistently on par with the lockess variant. With Rubinius,
however, the lockless variant was consistently faster by about 10x. Don't expect these
results to hold in all situations. As always, the only surefire way to know what will work
for your code is to measure.

CAS as a primitive

We've been looking at CAS operations as an alternative to locking solutions. They
certainly can be used this way, but research has shown that CAS are perhaps more
useful as a lower-level abstraction. Indeed, it's been proven that with this one
primitive, you can any lock-free algorithm.?

Some new technologies, such as Clojure, take full advantage of this and are showing
what's really possible with multi-threaded concurrency. In the end, CAS operations
don't provide a silver bullet. In some situations it can provide speed increases, in other
situations, new functionality.

As far as Ruby goes, there's not much support for these kinds of approaches. There's
the 'atomic' rubygem, and a few experimental data structures? floating around.
However, now that we have a CAS primitive available in Ruby, many academic papers
outlining algorithms should be applicable.*

2. http://www.podc.org/dijkstra/2003-dijkstra/
3. One can be found at https://gist.github.com/jstorimer/5298581, the other is an implementation of the Disruptor algorithm at
https://github.com/ileitch/disruptor
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4. Here are a few that are good introductions to these topics: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.98.3363&rep=rep1&type=pdf, http://www.cs.rochester.edu/research/synchronization/pseudocode/
queues.html
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Appendix: Thread-safety and Immutability

You learned earlier that the main thread-safety issue that's going to come up is
concurrent modification. When two threads are trying to modify an object at the same
time, things get unpredictable.

But immutability provides a way around this. An immutable object is one which can't
be modified after it's created. If an object can't be modified, then, by definition, two
threads can't modify it at the same time. So, by definition, immutable objects are
thread-safe!

On the surface, this sounds like an easy path to concurrency, but writing programs
with no mutability is very difficult. Pure functional programming languages, like
Haskell, implicitly support this programming model, and are notoriously hard to
master. In Ruby, everything is mutable by default, so attempting to write fully
immutable programs involves going against the grain and the language idioms.

But there's no need to throw out the baby with the bath water. If writing fully

immutable programs is difficult, there are certainly places for immutable objects or
immutable data structures that can provide an easier path to thread safety.
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Immutable Ruby objects

Immutability is actually supported in core Ruby using the Object#freeze method.

# This is a mutable Array
comics = []

# Appending to the array mutates it
comics << 'random’

# Freezing the Array makes it immutable
comics.freeze

comics << 'random’
#=> RuntimeError: can't modify frozen Array

The freeze method makes the Array immutable, but then it effectively becomes
unusable. How do you append to an Array that can't be updated?

The typical method signature for immutable objects is: methods that would typically
mutate the object instead return a new version of the object with the mutation
applied.

Here's an example using the 'hamster' rubygem.
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require 'hamster/vector'’

mutable = Array.new
immutable = Hamster::Vector.new

mutable #=> []
mutable.push(nil)
mutable #=> [nil]

immutable #=> []
immutable.add(nil) #=> [nil]
immutable #=> []

# This is typical of immutable data structures,
# re-assign the reference to the result of an
# operation.

immutable = immutable.add(nil)

immutable #=> [nil]

Notice how the immutable object retained its original state even after an element was
pushed onto it? Instead of mutating itself, its push method returned an updated
version of itself containing the new element. It's a sneaky way to avoid mutating
objects!

If you want to use immutable data structures in your Ruby program, you'll want to
check out Hamster. For one, it's got mature immutable implementations for Hash, List,
Vector, and others. It doesn't match Ruby's API 100%, but it provides what makes
sense for an immutable data structure. In terms of efficiencies, you might, at first
glance, think there's a lot duping of Ruby objects happening under the hood to create
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new versions of these data structures, but Hamster has a much more efficient
implementation that will be friendly to the garbage collector.’

Integrating immutability

You've had a quick look at how an immutable object works. Now how is it typically
used? The simplest use case is this: when you need to share objects between
threads, share immutable objects. If you need to share objects with other threads,
it's always preferrable to share an immutable object. If you share a mutable object
with another thread, then you need to be concerned about thread safety, probably
introducing synchronization.

This kind of complexity literally disappears if you share an immutable object. When
passing an object to another thread, making it immutable is a simple win. But what
about other situations?

Let's look at a classic multi-threaded arrangement: a producer and consumer. This
problem involves one thread distributing work to another group of threads, so you
definitely need a thread-safe data structure.

Here's how you might do it with a Hamster data structure.

1. The README outlines the API and links to the paper describing the implementation: https://github.com/harukizaemon/
hamster#readme.
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require 'hamster/queue’
@queue = Hamster::Queue.new

10.times do
@queue = @queue.enqueue(rand(100))
end

I've started with just the producer side of things because I see an issue already. In the
examples from the beginning of the chapter, you updated the immutable object by re-
assigning it to a new version of itself. That's what's happening here, but that's not safe
in the presence of multiple threads.

There's no synchronization being used here, so it's possible that between the time that
the producer thread evaluates the right hand side of its assignment to get a new
version of the queue and the time it actually assigns that value, another thread could
have removed an element from the queue and updated the reference. When the
producer thread completes its assignment, it could overwrite the change made by the
consumer thread.

So we can't get away from using some form of synchronization here. That's generally
the case with immutable objects. It's very easy to pass out immutable objects to
share, but if you need to have multiple threads modifying an immutable object
you still need some form of synchronization.

In this case, immutable data structures work great with CAS operations. Here's an
updated version making use of both:
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# ./code/snippets/hamster producer consumer.rb

require 'hamster/queue’
require 'atomic’

@queue_wrapper = Atomic.new(Hamster::Queue.new)

30.times do
@queue_wrapper.update { |queue]
queue.enqueue(rand(100))
}

end
consumers = []

3.times do
consumers << Thread.new do
10.times do
number = nil

@queue_wrapper.update { |queue]
number = queue.head
queue.dequeue

}
puts "The cubed root of #{number} is #{Math.cbrt(number)}”
end
end

end

consumers.each(&: join)
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Notice how well these two approaches work together?

The immutable approach looked out of place before, but now, inside of the update
block, it looks like regular mutable code. Remember the update block only cares about
the return value, and the immutable operations are returning new versions of the
queue to replace the existing version. Since the underlying queue is immutable, the
operations in the block are idempotent and can be run any number of times.

I'll take a minute to address the consumer side of the code, particularly how the
dequeuing happens. Here it is again:

@queue_wrapper.update { |queue|
number = queue.head
queue.dequeue

}
With a Hamster: :Queue, popping a value from the queue is a multi-step operation.

The dequeue method returns a new version of the queue with the first element
removed. This is what you'll want to assign back to the underlying queue reference.
But you also need a way to retrieve that first element before updating the list.
Hamster: : Queuetthead will give you that first element without modifying the queue.
One you have a reference to head, you can try to update the queue with the new
dequeued version.
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Wrap up

Like almost everything else you've seen, this approach has its pros and cons. On the
one hand, immutability is a nice guarantee to have, it's the simplest path to thread
safety when sharing objects. However, when you need to collect data from immutable
objects, it sometimes requires some re-thinking and some new techniques.

In terms of performance, the comparisons are a little unfair. Ruby has no native
immutable collections, so the native mutable collections are generally faster than what
Hamster can offer. However, if you're looking for the flexibility and guarantees that
immutable collections offer, the tradeoff is a good one to make.

I'll leave you with the 4 rules to safe concurrency again. Rule #3 is of particular
relevance to this chapter.

The safest path to concurrency is:

1. Don'tdo it.

2. If you must do it, don't share data across threads.

3. If you must share data across threads, don't share mutable data.

4. If you must share mutable data across threads, synchronize access to that

data.
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