
wwtcps | 1

Working With TCP Sockets

Copyright (C) 2012 Jesse Storimer.

wwtcps | 2

Contents
Introduction 11

My Story . 11

Who is This Book For? . 13

What to Expect . 13

The Berkeley Sockets API . 14

What's Not Covered? . 15

netcat . 16

Acknowledgements . 16

Your First Socket 17

Ruby's Socket Library . 17

Creating Your First Socket . 17

Understanding Endpoints . 18

Loopbacks . 19

IPv6 . 20

Ports . 20

Creating Your Second Socket . 21

Docs . 22

System Calls From This Chapter . 24

Establishing Connections 25

Server Lifecycle 26

Servers Bind . 26

Servers Listen . 30

Servers Accept . 32

Servers Close . 39

Ruby Wrappers . 42

System Calls From This Chapter . 47

Client Lifecycle 48

Clients Bind . 48

Clients Connect . 49

Ruby Wrappers . 52

System Calls From This Chapter . 53

Exchanging Data 54

Streams . 54

Sockets Can Read 57

Simple Reads . 57

It's Never That Simple . 58

Read Length . 59

Blocking Nature . 60

The EOF Event . 61

Partial Reads . 63

System Calls From This Chapter . 65

Sockets Can Write 66

System Calls From This Chapter . 66

Buffering 67

Write Buffers . 67

How Much to Write? . 68

Read Buffers . 69

How Much to Read? . 69

Our First Client/Server 71

The Server . 71

The Client . 73

Put It All Together . 75

Thoughts . 76

Socket Options 78

SO_TYPE . 78

SO_REUSE_ADDR . 79

System Calls From This chapter . 81

Non-blocking IO 82

Non-blocking Reads . 82

Non-blocking Writes . 85

Non-blocking Accept . 88

Non-blocking Connect . 89

Multiplexing Connections 91

select(2) . 92

Events Other Than Read/Write . 95

High Performance Multiplexing . 101

Nagle's algorithm 102

Framing Messages 104

Timeouts 111

Unusable Options . 111

IO.select . 112

Accept Timeout . 114

Connect Timeout . 114

DNS Lookups 117

resolv . 118

SSL Sockets 119

Urgent Data 124

Sending Urgent Data . 125

Receiving Urgent Data . 125

Limits . 126

Urgent Data and IO.select . 127

The SO_OOBINLINE Option . 128

Network Architecture Patterns 130

The Muse . 131

Serial 135

Explanation . 135

Implementation . 136

Considerations . 141

Process per connection 142

Explanation . 142

Implementation . 145

Considerations . 148

Examples . 149

Thread per connection 150

Explanation . 150

Implementation . 153

Considerations . 157

Examples . 158

Preforking 159

Explanation . 159

Implementation . 161

Considerations . 167

Examples . 168

Thread Pool 169

Overview . 169

Implementation . 170

Considerations . 175

Examples . 176

Evented (Reactor) 177

Overview . 177

Implementation . 179

Considerations . 189

Examples . 191

Hybrids 192

nginx . 192

Puma . 193

EventMachine . 194

Closing Thoughts 196

Releases
• October 24, 2012 - Initial public release.

• November 12, 2012 - First revision.
◦ Chapter 1: Ports. Added clarification about different IP addresses listening on

the same port number.

◦ Fixed thread-safety issue affecting the Thread Pool and Thread Per Connection
architecture patterns.

◦ Made the networking code in the architecture pattern examples more visible.

◦ Included the directory of runnable sample code from the book.

◦ Added Readme.txt.

• December 3, 2012 - Second release.

◦ Fixed a few misspelled words and one syntax error.

◦ Fix ToC linking to always link to the correct page

• December 20, 2012 - Third release.

◦ Added Urgent Data chapter.

◦ Fix issue with ToC links being off by one page.

wwtcps | 10

Chapter 0

Introduction
Sockets connect the digital world.

Think for a minute about the early days of computing. Computers were something used
exclusively by the scientists of the day. They were used for mathematical calculations,
simulations; Real Serious Stuff™.

It was many years later when computers were able to connect people that the layperson
became interested. Today, there are far more computers being used by laypeople than
by scientists. Computers became interesting for this group when they could share
information and communicate with anyone, anywhere.

It was network programming, and more specifically the proliferation of a particular
socket programming API that allowed this to happen. Chances are, if you're reading
this book, then you spend time every day connecting with people online and working
with technology built on the idea of connecting computers together.

So network programming is ultimately about sharing and communication. This book
exists so that you can better understand the underlying mechanisms of network
programming and make better contributions to its cause.

My StoryMy Story
I remember my first interaction with the world of sockets. It wasn't pretty.

wwtcps | 11

As a web developer I had experience integrating with all kinds of HTTP APIs. I was
accustomed to working with high-level concepts like REST & JSON.

Then I had to integrate with a domain registrar API.

I got a hold of the API documentation and was shocked. They wanted me to open a TCP
socket on some private host name at some random port. This didn't work anything like
the Twitter API!

Not only were they asking for a TCP socket, but they didn't encode data as JSON, or
even XML. They had their own line protocol I had to adhere to. I had to send a very
specifically formatted line of text over the socket, then send an empty line, then key-
value pairs for the arguments, followed by two empty lines to show the request was
done.

Then I had to read back a response in the same way. I was thinking "What in the...".

I showed this to a co-worker and he shared my trepidation. He had never worked with
an API like this. He quickly warned me: "I've only ever used sockets in C. You have to be
careful. Make sure you always close it before exiting otherwise it can stay open forever.
They're hard to close once the program exits".

What?! Open forever? Protocols? Ports? I was flabbergasted.

Then another co-worker took a look and said "Really? You don't know how to work with
sockets? You do know that you're opening a socket every time you read a web page,
right? You should really know how this works."

I took that as a challenge. It was tough to wrap my head around the concepts at first,
but I kept trying. I made lots of mistakes, but ultimately completed the integration. I

wwtcps | 12

think I'm a better programmer for it. It gave me a better understanding of the
technology that my work depends upon. It's a good feeling.

With this book I hope to spare you some of that pain I felt when I was introduced to
sockets, while still bringing you the sweet clarity that comes with having a deep
understanding of your technology stack.

Who is This Book For?Who is This Book For?
The intended audience is Ruby developers on Unix or Unix-like systems.

The book assumes that you know Ruby and makes no attempts to teach Ruby basics. It
assumes little to no knowledge of network programming concepts. It starts right at the
fundamentals.

All of the example code is written using Ruby 1.9 and is not tested on earlier versions.

What to ExpectWhat to Expect
This book is divided into three main parts.

The first part gives an introduction to the primitives of socket programming. You'll
learn how to create sockets, connect them together, and share data.

The second part of the book covers more advanced topics in socket programming. These
are the kinds of things you'll need once you get past doing 'Hello world'-style socket
programming.

wwtcps | 13

The third part applies everything from the first two parts of the book in a 'real-world'
scenario. This section goes past just sockets and shows you how to apply concurrency to
your network programs. Several architecture patterns are implemented and compared
to solve the same problem.

The Berkeley Sockets APIThe Berkeley Sockets API
The main focus of this book will be the Berkeley Sockets API and its usage. The Berkeley
Sockets API first appeared with version 4.2 of the BSD operating system in 1983. It was
the first implementation of the then newly proposed Transport Control Protocol (TCP).

The Berkeley Sockets API has truly stood the test of time. The API that you'll work with
in this book and the one supported in most modern programming languages is the
same API that was revealed to the world in 1983.

Surely one key reason why the Berkeley Sockets API has stood the test of time: You canYou can
use sockets without having to know the details of the underlying protocoluse sockets without having to know the details of the underlying protocol. This point is
key and will get more attention later.

The Berkeley Sockets API is a programming API that operates at a level above the
actually protocol implementation itself. It's concerned with stuff like connecting two
endpoints and sharing data between them rather than marshalling packets and
sequence numbering.

The de facto Berkeley Sockets API implementation is written in C, but almost any
modern language written in C will include bindings to that lower-level interface. As
such, there are many places in the book where I've gone to the effort of making the
knowledge portable.

wwtcps | 14

That is to say, rather than just showing the wrapper classes that Ruby offers around
socket APIs I always start by showing the lower level API, followed by Ruby's wrapper
classes. This keeps your knowledge portable.

When you're working in a language other than Ruby you'll still be able to apply the
fundamentals you learn here and use the lower level constructs to build what you need.

What's Not Covered?What's Not Covered?
I mentioned in the last chapter that one of the strengths of the Berkeley Sockets API is
that you don't need to know anything about the underlying protocol in order to use it.
This book heartily embraces that.

Some other networking books focus on explaining the underlying protocol and its
intricacies, even going as far as to re-implement TCP on top of another protocol like
UDP or raw sockets. This book won't go there.

It will embrace the notion that the Berkeley Sockets API can be used without knowing
the underlying protocol implementation. It will focus on how to use the API to do
interesting things and will keep as much focus as possible on getting real work done.

However, there are times, when making performance optimizations, for example, when
a lack of understanding of the underlying protocol will prevent you from using a
feature properly. In these cases I'll yield and explain the necessary bits so that the
concepts are understood.

Back to protocols. I've already said that TCP won't be covered in detail. The same is true
for application protocols like HTTP, FTP, etc.. We'll look at some of these as examples,
but not in detail.

wwtcps | 15

If you're really interested in learning about the protocol itself I'd recommend Stevens'
TCP/IP Illustrated 2.

netcatnetcat
There are several places in this book where the netcat tool is used to create arbitrary
connections to test the various programs we're writing. netcat (usually nc in your
terminal) is a Unix utility for creating arbitrary TCP (and UDP) connections and listens.
It's a useful tool to have in your toolbox when working with sockets.

If you're on a Unix system it's likely already installed and you should have no issues
with the examples.

AcknowledgementsAcknowledgements
First and foremost I have to thank my family: Sara and Inara. They didn't write the text,
but they contributed in their own unique ways. From giving me the time and space to
work on this, to reminding me what's important, if it weren't for them this book
certainly wouldn't exist.

Next up are my awesome reviewers. These people read drafts of the book and together
provided pages and pages of insights and comments that improved this book. Big
thanks to Jonathan Rudenberg, Henrik Nyh, Cody Fauser, Julien Boyer, Joshua Wehner,
Mike Perham, Camilo Lopez, Pat Shaughnessy, Trevor Bramble, Ryan LeCompte, Joe
James, Michael Bernstein, Jesus Castello, and Pradeepto Bhattacharya.

2. http://www.amazon.com/TCP-Illustrated-Vol-Addison-Wesley-Professional/dp/0201633469

wwtcps | 16

http://www.amazon.com/TCP-Illustrated-Vol-Addison-Wesley-Professional/dp/0201633469

Chapter 1

Your First Socket
Let's hit the ground running with an example.

Ruby's Socket LibraryRuby's Socket Library
Ruby's Socket classes are not loaded by default. Everything that you need can be
imported with require 'socket' . This includes a whole lot of different classes for TCP
sockets, UDP sockets, as well as all the necessary primitives. You'll get a look at some of
these throughout the book.

The 'socket' library is part of Ruby's standard library. Similar to 'openssl', 'zlib',
or 'curses', the 'socket' library provides thin bindings to dependable C libraries
that have remained stable over many releases of Ruby.

So don't forget to require 'socket' before trying to create a socket.

Creating Your First SocketCreating Your First Socket
On that note, let's dive in and create a socket:

wwtcps | 17

./code/snippets/create_socket.rb
require 'socket'

socket = Socket.new(Socket::AF_INET, Socket::SOCK_STREAM)

This creates a socket of type STREAM in the INET domain. The INET is short for internet
and specifically refers to a socket in the IPv4 family of protocols.

The STREAM part says you'll be communicating using a stream. This is provided by TCP.
If you had said DGRAM (for datagram) instead of STREAM that would refer to a UDP
socket. The type tells the kernel what kind of socket to create.

Understanding EndpointsUnderstanding Endpoints
I just threw out some new language there in talking about IPv4. Let's understand IPv4
and addressing before continuing.

When there are two sockets that want to communicate, they need to know where to find
each other. This works much like a phone call: if you want to have a phone conversation
with someone then you need to know their phone number.

Sockets use IP addresses to route messages to specific hosts. A host is identified by a
unique IP address. This is its 'phone number'.

Above I specifically mentioned IPv4 addresses. An IPv4 address typically looks
something like this: 192.168.0.1 . It's four numbers <= 255 joined with dots. What does that
do? Armed with an IP address one host is able to route data to another host at that
specific IP address.

wwtcps | 18

The IP Address Phone Book

It's easy enough to imagine socket communication when you know the address
of the host you want to communicate with, but how does one get that address?
Does it need to be memorized? Written down? Thankfully no.

You've likely heard of DNS before. This is a system that maps host names to IP
addresses. In this way you don't need to remember the specific address of the
host you want to talk to, but you do need to remember its name. Then you can
ask DNS to resolve that name to an address. Even if the underlying address
changes, the host name will always get you to the right place. Bingo.

LoopbacksLoopbacks
IP addresses don't always have to refer to remote hosts. Especially in development you
often want to connect to sockets on your local host.

Most systems define a loopback interface. This is an entirely virtual interface and,
unlike the interface to your network card, is not attached to any hardware. Any data
sent to the loopback interface is immediately received on the same interface. With a
loopback address your network is constrained to the local host.

The host name for the loopback interface is officially called localhost and the loopback IP
address is typically 127.0.0.1 . These are defined in a 'hosts' file for your system.

wwtcps | 19

IPv6IPv6
I've mentioned IPv4 a few times, but have neglected to mention IPv6. IPv6 is an
alternative addressing scheme for IP addresses.

Why does it exist? Because we literally ran out of IPv4 addresses. IPv4 consists of four
numbers each in the range of 0-255. Each of these four numbers can be represented
with 8 bits, giving us 32 bits total in the address. That means there are 232 or 4.3 billion
possible addresses. This a large number, but you can imagine how many individual
devices are connected to networks that you see every day... it's no wonder we're running
out.

So IPv6 is a bit of an elephant in the room at the moment. With IPv4 addresses now
being exhausted 2, IPv6 is necessarily becoming relevant. It has a different format that
allows for an astronomical number of unique IP addresses.

But for the most part you don't need to be typing these things out by hand and the
interaction with either addressing scheme will be identical.

PortsPorts
There's one more aspect that's crucial to an endpoint: the port number. Continuing with
our phone call example: if you want to have a conversation with someone in an office
building you'll have to call their phone number, then dial their extension. The port
number is the 'extension' of a socket endpoint.

2. http://www.nro.net/news/ipv4-free-pool-depleted

wwtcps | 20

http://www.nro.net/news/ipv4-free-pool-depleted

The combination of IP address and port number must be unique for each socket. Thus,
you could have one socket with an IPv4 address listening on the same port number as a
socket with an IPv6 address, but you couldn't have two sockets with the same IPv4
address listening on the same port number.

Without ports, a host would only be able to support one socket at a time. By marrying
each active socket to a specific port number, a host is able to support thousands of
sockets concurrently.

Which port number should I use?

This problem is solved not with DNS, but with a list of well-defined port
numbers.

For example, HTTP communication happens on port 80 by default, FTP
communication on port 21. There is actually an organization 3 responsible for
maintaining this list. More on port numbers in the next chapter.

Creating Your Second SocketCreating Your Second Socket
Now we get to see the first bit of syntactic sugar that Ruby offers.

Although there are much higher-level abstractions than this for creating sockets Ruby
also lets you represent the different options as symbols instead of constants. So

3. http://www.iana.org/

wwtcps | 21

http://www.iana.org/

Socket::AF_INET becomes :INET and Socket::SOCK_STREAM becomes :STREAM . Here's an example
of creating a TCP socket in the IPv6 domain:

./code/snippets/create_socket_memoized.rb
require 'socket'

socket = Socket.new(:INET6, :STREAM)

This creates a socket, but it's not yet ready to exchange data with other sockets. The
next chapter will look at taking a socket like this and preparing it to do actual work.

DocsDocs
Now seems like a good time to bring up documentation. One nice thing about doing
socket programming is that you already have lots of documentation on your machine
that can help you out. There are two primary places to find documentation for this stuff:
1) manpages, and 2) ri.

Let's do a quick review of each in turn.

1. Unix Manual pages will provide documentation about underlying system
functions (C code). These are the primitives that Ruby's socket library is built
upon. The manpages are thorough, but very low-level. They can give you an idea
of what a system call does where Ruby's docs are lacking. It can also tell you
what error codes are possible.

For example, in the code sample above we used Socket.new . This maps to a system
function called socket() which creates a socket. We can see the manpage for this
using the following command:

wwtcps | 22

$ man 2 socket

Notice the 2 ? This tells the man program to look in section 2 of the manpages.
The entire set of manpages is divided into sections.

◦ Section 1 is for 'General Commands' (shell programs)

◦ Section 2 is for system calls

◦ Section 3 is for C library functions

◦ Section 4 is for 'Special Files'

◦ Section 5 is for 'File Formats'

◦ Section 7 provides overviews on various topic. tcp(7) is of interest.

I'll refer to manpages using this syntax: socket(2). This refers to the socket
manpage in section 2. This is necessary because some manpages exist in
multiple sections. Take stat(1) and stat(2) as an example.

If you have a look at the 'SEE ALSO' section of socket(2), you'll see some of the
other system calls we'll be looking at.

2. ri is Ruby's command line documentation tool. The Ruby installer installs
documentation for the core library as part of the installation process.

Some parts of Ruby aren't very well documented, but I must say that the socket
library is pretty well covered. Let's look at the ri docs for Socket.new . We use the
following command:

wwtcps | 23

$ ri Socket.new

ri is useful and doesn't require an internet connection. It's a good place to look if
you need guidance or examples.

System Calls From This ChapterSystem Calls From This Chapter
Each chapter will list any new system calls that were introduced and show you were
you can find out more about them using ri or manpages.

• Socket.new -> socket(2).

wwtcps | 24

Chapter 2

Establishing Connections
TCP connections are made between two endpoints. The endpoints may be on the same
machine or on machines in two different parts of the world. Yet the principles behind
each are the same.

When you create a socket it must assume one of two roles: 1) initiator, or 2) listener.
Both roles are required. Without a listener socket no connection can be initiated.
Similarly, without an initiator there's no need for a listener.

In network programming the term commonly used for a socket that listens is a servera socket that listens is a server
and a socket that initiates a connection is a clienta socket that initiates a connection is a client. We'll look at the lifecycle of each in
turn.

wwtcps | 25

Chapter 3

Server Lifecycle
A server socket listens for connections rather than initiating them. The typical lifecycle
looks something like this:

1. create

2. bind

3. listen

4. accept

5. close

We covered #1 already; now we'll continue on with the rest of the list.

Servers BindServers Bind
The second step in the lifecycle of a server socket is to bindbind to a port where it will listen
for connections.

wwtcps | 26

./code/snippets/bind.rb
require 'socket'

First, create a new TCP socket.
socket = Socket.new(:INET, :STREAM)

Create a C struct to hold the address for listening.
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')

Bind to it.
socket.bind(addr)

This is a low-level implementation that shows how to bind a TCP socket to a local port.
In fact, it's almost identical to the C code you would write to accomplish the same thing.

This particular socket is now bound to port 4481 on the local host. Other sockets will not
be able to bind to this port; doing so would result in an Errno::EADDRINUSE exception
being raised. Client sockets will be able to connect to this socket using this port
number, once a few more steps have been completed.

If you run that code block you'll notice that it exits immediately. The code works but
doesn't yet do enough to actually listen for a connection. Keep reading to see how to put
the server in listen mode.

To recap, a server binds to a specific, agreed-upon port number which a client socket
can then connect to.

Of course, Ruby provides syntactic sugar so that you never have to actually use
Socket.pack_sockaddr_in or Socket#bind directly. But before learning the syntactic sugar it's
important that we see how to do things the hard way.

wwtcps | 27

What port should I bind to?

This is an important consideration for anyone writing a server. Should you pick a
random port number? How can you tell if some other program has already 'claimed' a
port as their own?

In terms of what's possible, any port from 1-65,535 can be used, but there are important
conventions to consider before picking a port.

The first rule: don't try to use a port in the 0-1024 rangedon't try to use a port in the 0-1024 range. These are considered 'well-
known' ports and are reserved for system use. A few examples: HTTP traffic defaults to
port 80, SMTP traffic defaults to port 25, rsync defaults to port 873. Binding to these
ports typically requires root access.

The second rule: don't use a port in the 49,000-65,535 rangedon't use a port in the 49,000-65,535 range. These are the ephemeral
ports. They're typically used by services that don't operate on a predefined port number
but need ports for temporary purposes. They're also an integral part of the connection
negotiation process we'll see in the next section. Picking a port in this range might
cause issues for some of your users.

Besides that, any port from 1025-48,999 is fair game for your usesany port from 1025-48,999 is fair game for your uses. If you're planning on
claiming one of those ports as the port for your server then you should have a look at
the IANA list of registered ports 2 and make sure that your choice doesn't conflict with
some other popular server out there.

2. https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

wwtcps | 28

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

What address should I bind to?

I bound to 0.0.0.0 in the above example, but what's the difference when I bind to 127.0.0.1 ?
Or 1.2.3.4 ? The answer has to do with interfaces.

Earlier I mentioned that your system has a loopback interface represented with the IP
address 127.0.0.1 . It also has a physical, hardware-backed interface represented by a
different IP address (let's pretend it's 192.168.0.5). When you bind to a specific interface,
represented by its IP address, your socket is only listening on that interface. It will
ignore the others.

If you bind to 127.0.0.1 then your socket will only be listening on the loopback interface.
In this case, only connections made to localhost or 127.0.0.1 will be routed to your server
socket. Since this interface is only available locally, no external connections will be
allowed.

If you bind to 192.168.0.5 , in this example, then your socket will only be listening on that
interface. Any clients that can address that interface will be listened for, but any
connections made on localhost will not be routed to that server socket.

If you want to listen on all interfaces then you can use 0.0.0.0 . This will bind to any
available interface, loopback or otherwise. Most of the time, this is what you want.

wwtcps | 29

./code/snippets/loopback_binding.rb
require 'socket'

This socket will bind to the loopback interface and will
only be listening for clients from localhost.
local_socket = Socket.new(:INET, :STREAM)
local_addr = Socket.pack_sockaddr_in(4481, '127.0.0.1')
local_socket.bind(local_addr)

This socket will bind to any of the known interfaces and
will be listening for any client that can route messages
to it.
any_socket = Socket.new(:INET, :STREAM)
any_addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
any_socket.bind(any_addr)

This socket attempts to bind to an unkown interface
and raises Errno::EADDRNOTAVAIL.
error_socket = Socket.new(:INET, :STREAM)
error_addr = Socket.pack_sockaddr_in(4481, '1.2.3.4')
error_socket.bind(error_addr)

Servers ListenServers Listen
After creating a socket, and binding to a port, the socket needs to be told to listen for
incoming connections.

wwtcps | 30

./code/snippets/listen.rb
require 'socket'

Create a socket and bind it to port 4481.
socket = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
socket.bind(addr)

Tell it to listen for incoming connections.
socket.listen(5)

The only addition to the code from the last chapter is a call to listen on the socket.

If you run that code snippet it still exits immediately. There's one more step in the
lifecycle of a server socket required before it can process connections. That's covered in
the next chapter. First, more about listen .

The Listen Queue

You may have noticed that we passed an integer argument to the listen method. This
number represents the maximum number of pending connections your server socket is
willing to tolerate. This list of pending connections is called the listen queuethe listen queue.

Let's say that your server is busy processing a client connection, when any new client
connections arrive they'll be put into the listen queue. If a new client connection arrives
and the listen queue is full then the client will raise Errno::ECONNREFUSED .

wwtcps | 31

How big should the listen queue be?

OK, so the size of the listen queue looks a bit like a magic number. Why wouldn't we
want to set that number to 10,000? Why would we ever want to refuse a connection? All
good questions.

First, we should talk about limits. You can get the current maximum allowed listen
queue size by inspecting Socket::SOMAXCONN at runtime. On my Mac this number is 128. So
I'm not able to use a number larger than that. The root user is able to increase this limit
at the system level for servers that need it.

Let's say you're running a server and you're getting reports of Errno::ECONNREFUSED .
Increasing the size of the listen queue would be a good starting point. But ultimately
you don't want to have connections waiting in your listen queue. That means that users
of your service are having to wait for their responses. This may be an indication that
you need more server instances or that you need a different architecture.

Generally you don't want to be refusing connections. You can set the listen queue to the
maximum allowed queue size using server.listen(Socket::SOMAXCONN) .

Servers AcceptServers Accept
Finally we get to the part of the lifecycle where the server is actually able to handle an
incoming connection. It does this with the accept method. Here's how to create a
listening socket and receive the first connection:

wwtcps | 32

./code/snippets/accept.rb
require 'socket'

Create the server socket.
server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(128)

Accept a connection.
connection, _ = server.accept

Now if you run that code you'll notice that it doesn't return immediately! That's right,
the accept method will block until a connection arrives. Let's give it one using netcat:

$ echo ohai | nc localhost 4481

When you run these snippets you should see the nc(1) program and the Ruby program
exit successfully. It may not be the most epic finale ever, but it's proof that everything is
connected and working properly. Congrats!

Accept is blocking

The accept call is a blocking call. It will block the current thread indefinitely until it
receives a new connection.

wwtcps | 33

Remember the listen queue we talked about in the last chapter? accept simply
pops the next pending connection off of that queue. If none are available it waits
for one to be pushed onto it.

Accept returns an Array

In the example above I assigned two values from one call to accept . The accept method
actually returns an Array. The Array contains two elements: first, the connection, and
second, an Addrinfo object. This represents the remote address of the client connection.

Addrinfo

Addrinfo is a Ruby class that represents a host and port number. It wraps up an
endpoint representation nicely. You'll see it as part of the standard Socket

interface in a few places.

You can construct one of these using something like Addrinfo.tcp('localhost', 4481) .
Some useful methods are #ip_address and #ip_port . Have a look at $ ri Addrinfo for
more.

Let's begin by taking a closer look at the connection and address returned from #accept .

wwtcps | 34

./code/snippets/accept_connection_class.rb
require 'socket'

Create the server socket.
server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(128)

Accept a new connection.
connection, _ = server.accept

print 'Connection class: '
p connection.class

print 'Server fileno: '
p server.fileno

print 'Connection fileno: '
p connection.fileno

print 'Local address: '
p connection.local_address

print 'Remote address: '
p connection.remote_address

When the server gets a connection (using the netcat snippet from above) it outputs:

wwtcps | 35

Connection class: Socket
Server fileno: 5
Connection fileno: 8
Local address: #<Addrinfo: 127.0.0.1:4481 TCP>
Remote address: #<Addrinfo: 127.0.0.1:58164 TCP>

The results from this little bit of code tell us a ton about how TCP connections are
handled. Let's dissect it a little bit at a time.

Connection Class

Although accept returns a 'connection', this code tells us that there's no special
connection class. A connection is actually an instance of Socket .

File Descriptors

We know that accept is returning an instance of Socket , but this connection has a
different file descriptor number (or fileno) than the server socket. The file descriptor
number is the kernel's method for keeping track of open files in the current process.

Sockets are Files?

Yep. At least in the land of Unix everything is treated as a file 3. This includes
files found on the filesystem as well as things like pipes, sockets, printers, etc.

3. http://ph7spot.com/musings/in-unix-everything-is-a-file

wwtcps | 36

http://ph7spot.com/musings/in-unix-everything-is-a-file

This indicates that accept has returned a brand new Socket different from the server
socket. This Socket instance represents the connection. This is important. Each
connection is represented by a new Socket object so that the server socket can remain
untouched and continue to accept new connections.

Connection Addresses

Our connection object knows about two addresses: the local address and the remote
address. The remote address is the second return value returned from accept but can
also be accessed as remote_address on the connection.

The local_address of the connection refers to the endpoint on the local machine. The
remote_address of the connection refers to the endpoint at the other end, which might be
on another host but, in our case, it's on the same machine.

Each TCP connection is defined by this unique grouping of local-host, local-port,
remote-host, and remote-port. The combination of these four properties must be unique
for each TCP connection.

Let's put that in perspective for a moment. You can initiate two simultaneous
connections from the local host to a remote host, so long as the remote ports are
unique. Similarly you can accept two simultaneous connections from a remote host to
the same local port, provided that the remote ports are unique. But you cannot have two
simultaneous connections to a remote host if the local ports and remote ports are
identical.

wwtcps | 37

The Accept Loop

So accept returns one connection. In our code examples above the server accepts one
connection and then exits. When writing a production server it's almost certain that
we'd want to continually listen for incoming connections so long as there are more
available. This is easily accomplished with a loop:

./code/snippets/naive_accept_loop.rb
require 'socket'

Create the server socket.
server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(128)

Enter an endless loop of accepting and
handling connections.
loop do

connection, _ = server.accept
handle connection
connection.close

end

This is a common way to write certain kinds of servers using Ruby. It's so common in
fact that Ruby provides some syntactic sugar on top of it. We'll look at Ruby wrapper
methods at the end of this chapter.

wwtcps | 38

Servers CloseServers Close
Once a server has accepted a connection and finished processing it, the last thing for it
to do is to close that connection. This rounds out the create-process-close lifecycle of a
connection.

Rather than paste another block of code, I'll refer you to the one above. It calls close on
the connection before accepting a new one.

Closing on Exit

Why is close needed? When your program exits, all open file descriptors (including
sockets) will be closed for you. So why should you close them yourself? There are a few
good reasons:

1. Resource usage. If you're done with a socket, but you don't close it, it's possible
to store references to sockets you're no longer using. In Ruby's case the garbage
collector is your friend, cleaning up any unreferenced connections for you, but
it's a good idea to maintain full control over your resource usage and get rid of
stuff you don't need. Note that the garbage collector will close anything that it
collects.

2. Open file limit. This is really an extension of the previous one. Every process is
subject to a limit on the number of open files it can have. Remember that each
connection is a file? Keeping around unneeded connections will continue to
bring your process closer and closer to this open file limit, which may cause
issues later.

wwtcps | 39

To find out the allowed number of open files for the current process you can use
Process.getrlimit(:NOFILE) . The returned value is an Array of the soft limit (user-
configurable) and hard limit (system), respectively.

If you want to bump up your limit to the maximum then you can
Process.setrlimit(Process.getrlimit(:NOFILE)[1]) .

Different Kinds of Closing

Given that sockets allow two-way communication (read/write) it's actually possible to
close just one of those channels.

./code/snippets/close_write.rb
require 'socket'

Create the server socket.
server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(128)
connection, _ = server.accept

After this the connection may no longer write data, but may still read data.
connection.close_write

After this the connection may no longer read or write any data.
connection.close_read

wwtcps | 40

Closing the write stream will send an EOF to the other end of the socket (more on EOF
soon).

The close_write and close_read methods make use of shutdown(2) under the hood.
shutdown(2) is notably different than close(2) in that it causes a part of the connection
to be fully shut down, even if there are copies of it lying around.

How are there copies of connections?

It's possible to create copies of file descriptors using Socket#dup . This will actually
duplicate the underlying file descriptor at the operating system level using
dup(2). But this is pretty uncommon, and you probably won't see it.

The more common way that you can get a copy of a file descriptor is through
Process.fork . This method creates a brand new process (Unix only) that's an exact
copy of the current process. Besides providing a copy of everything in memory,
any open file descriptors are dup(2)ed so that the new process gets a copy.

close will close the socket instance on which it's called. If there are other copies of the
socket in the system then those will not be closed and the underlying resources will not
be reclaimed. Indeed, other copies of the connection may still exchange data even if one
instance is closed.

So shutdown , unlike close , will fully shut down communication on the current socket and
other copies of it, thereby disabling any communication happening on the current
instance as well as any copies. But it does not reclaim resources used by the socket.
Each individual socket instance must still be close d to complete the lifecycle.

wwtcps | 41

./code/snippets/shutdown.rb
require 'socket'

Create the server socket.
server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(128)
connection, _ = server.accept

Create a copy of the connection.
copy = connection.dup

This shuts down communication on all copies of the connection.
connection.shutdown

This closes the original connection. The copy will be closed
when the GC collects it.
connection.close

Ruby WrappersRuby Wrappers
We all know and love the elegant syntax that Ruby offers, and its extensions for
creating and working with server sockets are no exception. These convenience methods
wrap up the boilerplate code in custom classes and leverage Ruby blocks where
possible. Let's have a look.

wwtcps | 42

Server Construction

First up is the TCPServer class. It's a clean way to abstract the 'server construction' part of
the process.

./code/snippets/server_easy_way.rb
require 'socket'

server = TCPServer.new(4481)

Ah, now that feels more like Ruby code. That code is effectively replacing this:

./code/snippets/server_hard_way.rb
require 'socket'

server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(5)

I know which one I prefer to use!

wwtcps | 43

Creating a TCPServer instance actually returns an instance of TCPServer , not Socket .
The interface exposed by each of them is nearly identical, but with some key
differences. The most notable of which is that TCPServer#accept returns only the
connection, not the remote_address .

Notice that we didn't specify the size of the listen queue for these constructors?
Rather than using Socket::SOMAXCONN , Ruby defaults to a listen queue of size 5 . If
you need a bigger listen queue you can call TCPServer#listen after the fact.

As IPv6 gains momentum, your servers may need to be able to handle both IPv4 and
IPv6. Using this Ruby wrapper will return two TCP sockets, one that can be reached via
IPv4 and one that can be reached via IPv6, both listening on the same port.

./code/snippets/server_sockets.rb
require 'socket'

servers = Socket.tcp_server_sockets(4481)

Connection Handling

Besides constructing servers, Ruby also provides nice abstractions for handling
connections.

Remember using loop to handle multiple connections? Using loop is for chumps. Do it
like this:

wwtcps | 44

./code/snippets/accept_loop.rb
require 'socket'

Create the listener socket.
server = TCPServer.new(4481)

Enter an endless loop of accepting and
handling connections.
Socket.accept_loop(server) do |connection|

handle connection
connection.close

end

Note that connections are not automatically closed at the end of each block. The
arguments that get passed into the block are the exact same ones that are returned
from a call to accept .

Socket.accept_loop has the added benefit that you can actually pass multiple listening
sockets to it and it will accept connections on any of the passed-in sockets. This goes really
well with Socket.tcp_server_sockets :

wwtcps | 45

./code/snippets/accept_server_sockets.rb
require 'socket'

Create the listener socket.
servers = Socket.tcp_server_sockets(4481)

Enter an endless loop of accepting and
handling connections.
Socket.accept_loop(servers) do |connection|

handle connection
connection.close

end

Notice that we're passing a collection of sockets to Socket.accept_loop and it handles them
gracefully.

Wrapping it all into one

The granddaddy of the Ruby wrappers is Socket.tcp_server_loop , it wraps all of the previous
steps into one:

./code/snippets/tcp_server_loop.rb
require 'socket'

Socket.tcp_server_loop(4481) do |connection|
handle connection
connection.close

end

wwtcps | 46

This method is really just a wrapper around Socket.tcp_server_sockets and Socket.accept_loop ,
but you can't write it any more succinctly than that!

System Calls From This ChapterSystem Calls From This Chapter
• Socket#bind -> bind(2)

• Socket#listen -> listen(2)

• Socket#accept -> accept(2)

• Socket#local_address -> getsockname(2)

• Socket#remote_address -> getpeername(2)

• Socket#close -> close(2)

• Socket#close_write -> shutdown(2)

• Socket#shutdown -> shutdown(2)

wwtcps | 47

Chapter 4

Client Lifecycle
I mentioned that there are two critical roles that make up a network connection. The
server takes the listening role, listening for and processing incoming connections. The
client, on the other hand, takes the role of initiating those connections with the server.
In other words, it knows the location of a particular server and creates an outbound
connection to it.

As I'm sure is obvious, no server is complete without a client.

The client lifecycle is a bit shorter than that of the server. It looks something like this:

1. create

2. bind

3. connect

4. close

Step #1 is the same for both clients and servers, so we'll begin by looking at bind from
the perspective of clients.

Clients BindClients Bind
Client sockets begin life in the same way as server sockets, with bind . In the server
section we called bind with a specific address and port. While it's rare for a server to

wwtcps | 48

omit its call to #bind , its rare for a client to make a call to bindits rare for a client to make a call to bind. If the client socket (or
the server socket, for that matter) omit its call to bind, it will be assigned a random port
from the ephemeral range.

Why not call bind?

Clients don't call bind because they don't need to be accessible from a known port
number. The reason that servers bind to a specific port number is that clients
expect a server to be available at a certain port number.

Take FTP as an example. The well-known port for FTP is 21. Hence FTP servers
should bind to that port so that clients know where to find them. But the client is
able to connect from any port number. The client port number does not affect
the server.

Clients don't call bind because no one needs to know what their port number is.

There's no code snippet for this section because the recommendation is: don't do it!

Clients ConnectClients Connect
What really separates a client from a server is the call to connect . This call initiates a
connection to a remote socket.

wwtcps | 49

./code/snippets/connect.rb
require 'socket'

socket = Socket.new(:INET, :STREAM)

Initiate a connection to google.com on port 80.
remote_addr = Socket.pack_sockaddr_in(80, 'google.com')
socket.connect(remote_addr)

Again, since we're using the low-level primitives here we're needing to pack the address
object into its C struct representation.

This code snippet will initiate a TCP connection from a local port in the ephemeral
range to a listening socket on port 80 of google.com. Notice that we didn't use a call to
bind .

Connect Gone Awry

In the lifecycle of a client it's quite possible for a client socket to connect to a server
before said server is ready to accept connections. It's equally possible to connect to a
non-existent server. In fact, both of these situations produce the same outcome. Since
TCP is optimistic, it waits as long as it can for a response from a remote host.

So, let's try connecting to an endpoint that's not available:

wwtcps | 50

./code/snippets/connect_non_existent.rb
require 'socket'

socket = Socket.new(:INET, :STREAM)

Attempt to connect to google.com on the known gopher port.
remote_addr = Socket.pack_sockaddr_in(70, 'google.com')
socket.connect(remote_addr)

If you run this bit of code it can take a long time to return from the connect call. There is
a long timeout by default on a connect .

This makes sense for clients where bandwidth is an issue and it may actually take a
long time to establish a connection. Even for bandwidth-rich clients the default
behaviour is hopeful that the remote address will be able to accept our connection soon.

Nevertheless, if you wait it out, you'll eventually see an Errno::ETIMEDOUT exception
raised. This is the generic timeout exception when working with sockets and indicates
that the requested operation timed out. If you're interested in tuning your socket
timeouts there's an entire Timeouts chapter later in the book.

This same behaviour is observed when a client connects to a server that has called bind

and listen but has not yet called accept . The only case in which connect returns
successfully is if the remote server accepts the connect.

wwtcps | 51

Ruby WrappersRuby Wrappers
Much like the code for creating server sockets, the code for creating client sockets is
verbose and low-level. As expected, Ruby has wrappers to make these easier to work
with.

Client Construction

Before I show you the nice, rosy Ruby-friendly code I'm going to show the low-level
verbose code so we have something to compare against:

./code/snippets/connect.rb
require 'socket'

socket = Socket.new(:INET, :STREAM)

Initiate a connection to google.com on port 80.
remote_addr = Socket.pack_sockaddr_in(80, 'google.com')
socket.connect(remote_addr)

Behold the syntactic sugar:

./code/snippets/client_easy_way.rb
require 'socket'

socket = TCPSocket.new('google.com', 80)

That feels much better. Three lines, two constructors, and lots of context have been
reduced into a single constructor.

wwtcps | 52

There's a similar client construction method using Socket.tcp that can take a block form:

./code/snippets/client_block_form.rb
require 'socket'

Socket.tcp('google.com', 80) do |connection|
connection.write "GET / HTTP/1.1\r\n"
connection.close

end

Omitting the block argument behaves the same
as TCPSocket.new().
client = Socket.tcp('google.com', 80)

System Calls From This ChapterSystem Calls From This Chapter
• Socket#bind -> bind(2)

• Socket#connect -> connect(2)

wwtcps | 53

Chapter 5

Exchanging Data
The previous section was all about establishing connections, connecting two endpoints
together. While interesting in itself, you can't actually do anything interesting without
exchanging data over a connection. This section gets into that. By the end we'll actually
be able to wire up a server and client and have them talking to each other!

Before we dive in I'll just stress that it can be very helpful to think of a TCP connection
as a series of tubes connecting a local socket to a remote socket, along which we can
send and receive chunks of data. The Berkeley Sockets API was designed such that that
we could model the world like this and have everything work out.

In the real world all of the data is encoded as TCP/IP packets and may visit many
routers and hosts on the way to its destination. It's a bit of a crazy world and it's good to
keep that in mind when things aren't working out, but thankfully, that crazy world is
one that a lot of people worked very hard to cover up so we can stick to our simple
mental model.

StreamsStreams
One more thing I need to drive home: the stream-based nature of TCP, something we
haven't talked about yet.

Way back at the start of the book when we created our first socket we passed an option
called :STREAM which said that we wanted to use a stream socket. TCP is a stream-based

wwtcps | 54

protocol. If we had not passed the :STREAM option when creating our socket it simply
wouldn't be a TCP socket.

So what does that mean exactly? How does it affect the code?

First, I hinted at the term packets above. At the underlying protocol level TCP sends
packets over the network.

But we're not going to talk about packets. From the perspective of your application code
a TCP connection provides an ordered stream of communication with no beginning and
no end. There is only the stream.

Let's illustrate this with some pseudo-code examples.

This code sends three pieces of data over the network, one at a time.
data = ['a', 'b', 'c']

for piece in data
write_to_connection(piece)

end

This code consumes those three pieces of data in one operation.
result = read_from_connection #=> ['a', 'b', 'c']

The moral of the story here is that a stream has no concept of message boundaries. Even
though the client sent three separate pieces of data, the server received them as one
piece of data when it read them. It had no knowledge of the fact that the client sent the
data in three distinct chunks.

wwtcps | 55

Note that, although the message boundaries weren't preserved, the order of the content
on the stream was preserved.

wwtcps | 56

Chapter 6

Sockets Can Read
Thus far we've talked a lot about connections. Now we get to the really interesting part:
how to pass data across socket connections. Unsurprisingly there is more than one way
to read/write data when working with sockets, and on top of that, Ruby provides nice
convenience wrappers for us.

This chapter will dive in to the different ways of reading data and when they're
appropriate.

Simple ReadsSimple Reads
The simplest way to read data from a socket is using the read method:

./code/snippets/read.rb
require 'socket'

Socket.tcp_server_loop(4481) do |connection|
Simplest way to read data from the connection.
puts connection.read

Close the connection once we're done reading. Lets the client
know that they can stop waiting for us to write something back.
connection.close

end

wwtcps | 57

If you run that example in one terminal and the following netcat command in another
terminal, you should see the output at the Ruby server this time:

$ echo gekko | nc localhost 4481

If you've worked with Ruby's File API then this code may look familiar. Ruby's
various socket classes, along with File , share a common parent in IO . All IO
objects in Ruby (sockets, pipes, files, etc.) share a common interface supporting
methods like read , write , flush , etc.

Indeed, this isn't an innovation on Ruby's part. The underlying read(2), write(2),
etc. system calls all function similarly with files, sockets, pipes, etc. This
abstraction is built right into the core of the operating system itself. Remember,
everything is a file.

It's Never That SimpleIt's Never That Simple
This method of reading data is simple, but brittle. If you run the example code again
against this netcat command and leave it alone, the server will never finish reading the
data and never exit:

$ tail -f /var/log/system.log | nc localhost 4481

wwtcps | 58

The reason for this behaviour is something called EOF (end-of-file). It's covered in detail
in the next section. For now we'll just play naive and look at the naive fix.

The gist of the issue is that tail -f never finishes sending data. If there is no data left to
tail, it waits until there is some. Since it leaves its pipe open to netcat , then netcat too will
never finish sending data to the server.

The server's call to read will continue blocking until the client finishes sending data. In
this case the server will wait...and wait...and wait... meanwhile it's buffering whatever
data it does receive in memory and not returning it to your program.

Read LengthRead Length
One way around the above issue is to specify a minimum length to be read. That way,
instead of continuing to read data until the client is finished you can tell the server to
read a certain amount of data, then return.

./code/snippets/read_with_length.rb
require 'socket'
one_kb = 1024 # bytes

Socket.tcp_server_loop(4481) do |connection|
Read data in chunks of 1 kb.
while data = connection.read(one_kb) do

puts data
end

connection.close
end

wwtcps | 59

This above example, when run along with the same command:

$ tail -f /var/log/system.log | nc localhost 4481

will actually have the server printing data while the netcat command is still running.
The data will be printed in one-kilobyte chunks.

The difference in this example is that we passed an integer to read . This tells it to stop
reading and return what it has only once it has read that amount of data. Since we still
want to get all the data available, we just loop over that read method calling it until it
doesn't return any more data.

Blocking NatureBlocking Nature
A call to read will always want to block and wait for the full length of data to arrive.
Take our above example of reading one kilobyte at a time. After running it a few times,
it should be obvious that if some amount of data has been read, but if that amount is
less than one kilobyte, then read will continue to block until one full kilobyte can be
returned.

It's actually possible to get yourself into a deadlock situation using this method. If a
server attempts to read one kilobyte from the connection while the client sends only 500
bytes and then waits, the server will continue waiting for that full kilobyte!

This can be remedied in two ways: 1) the client sends an EOF after sending its 500 bytes,
2) the server uses a partial read.

wwtcps | 60

The EOF EventThe EOF Event
When a connection is being read from and receives an EOF event, it can be sure that no
more data will be coming over the connection and it can stop reading. This is an
important concept to understand for any IO operation.

But first, a quick bit of history: EOF stands for 'end of file'. You might say "but we're not
dealing with files here...". You'd be mostly right, but need to keep in mind that
everything is a file.

You'll sometimes see reference to the 'EOF character', but there's really no such thing.
EOF is not represented as a character sequence, EOF is more like a state eventEOF is more like a state event. When a
socket has no more data to write, it can shutdown or close its ability to write any more
data. This results in an EOF event being sent to the reader on the other end, letting it
know that no more data will be sent.

So let's bring this full circle and fix the issue we had where the client sent only 500
bytes of data while the server expected one kilobyte.

A remedy for this situation would be for the client to send their 500 bytes, then send an
EOF event. The server receives this event and stops reading, even though it hasn't
reached its one kilobyte limit. EOF tells it that no more data is coming.

That's the reason that this example works:

wwtcps | 61

./code/snippets/read_with_length.rb
require 'socket'
one_kb = 1024 # bytes

Socket.tcp_server_loop(4481) do |connection|
Read data in chunks of 1 kb.
while data = connection.read(one_kb) do

puts data
end

connection.close
end

given this client connection:

./code/snippets/write_with_eof.rb
require 'socket'

client = TCPSocket.new('localhost', 4481)
client.write('gekko')
client.close

The simplest way for a client to send an EOF is to close its socket. If its socket is closed,
it certainly won't be sending any more data!

A quick reminder of the fact that EOF is aptly named. When you call File#read it
behaves just like Socket#read . It will read data until there's no more to read. Once
it's consumed the entire file, it receives an EOF event and returns the data it has.

wwtcps | 62

Partial ReadsPartial Reads
A few paragraphs back I mentioned the term 'partial read'. That's something that could
have gotten us out of that last situation as well. Time to look at that.

The first method of reading data we looked at was a lazy method. When you call read it
waits as long as possible before returning data, either until it receives its minimum
length or gets an EOF. There is an alternative method of reading that takes an opposite
approach. It's readpartial .

Calls to readpartial , rather than wanting to block, want to return available data
immediately. When calling readpartial you must pass an integer argument, specifying the
maximum length. readpartial will read up to that length. So if you tell it to read up to one
kilobyte of data, but the client sends only 500 bytes, then readpartial will not block. It will
return that data immediately.

Running this server:

wwtcps | 63

./code/snippets/readpartial_with_length.rb
require 'socket'
one_hundred_kb = 1024 * 100

Socket.tcp_server_loop(4481) do |connection|
begin

Read data in chunks of 1 hundred kb or less.
while data = connection.readpartial(one_hundred_kb) do

puts data
end

rescue EOFError
end

connection.close
end

along with this client:

$ tail -f /var/log/system.log | nc localhost 4481

will show that the server is actually streaming each bit of data as it becomes accessible,
rather than waiting for one hundred kilobyte chunks. readpartial will happily return less
than its maximum length if the data is available.

In terms of EOF, readpartial behaves differently than read . Whereas read simply returns
when it receives EOF, readpartial actually raises an EOFError exception. Something to
watch out for.

wwtcps | 64

To recap, read is lazy, waiting as long as possible to return as much data as possible
back to you. Conversely, readpartial is eager, returning data to you as soon as its
available.

After we look at the basics of write we'll turn to buffers. At that point we get to answer
some interesting questions like: How much should I try to read at once? Is it better to do
lots of small reads or one big read?

System Calls From This ChapterSystem Calls From This Chapter
• Socket#read -> read(2). Behaves more like fread(3).

• Socket#readpartial -> read(2).

wwtcps | 65

Chapter 7

Sockets Can Write
I know that at least some of you saw this coming: in order for one socket to read data
another socket must write data! Rejoice!

There's really only one workhorse in terms of writing to sockets, and that's the write

method. Its usage is pretty straightforward. Just follow your intuition.

./code/snippets/write.rb
require 'socket'

Socket.tcp_server_loop(4481) do |connection|
Simplest way to write data to a connection.
connection.write('Welcome!')
connection.close

end

There's nothing more than that to the basic write call. We'll get to answer some more
interesting questions around writing in the next chapter when we look at buffering.

System Calls From This ChapterSystem Calls From This Chapter
• Socket#write -> write(2)

wwtcps | 66

Chapter 8

Buffering
Here we'll answer a few key questions: How much data should I read/write with one
call? If write returns successfully does that mean that the other end of the connection
received my data? Should I split a big write into a bunch of smaller writes? What's the
impact?

Write BuffersWrite Buffers
Let's first talk about what really happens when you write data on a TCP connection.

When you call write and it returns, without raising an exception, this does not mean that
the data has been successfully sent over the network and received by the client socket.
When write returns, it acknowledges that you have left your data in the capable hands of
Ruby's IO system and the underlying operating system kernel.

There is at least one layer of buffers between your application code and actual network
hardware. Let's pinpoint where those are and then we'll look at how to work around
them.

When write returns successfully, the only guarantee you have is that your data is now in
the capable hands of the OS kernel. It may decide to send your data immediately, or
keep it and combine it with other data for efficiency.

wwtcps | 67

By default, Ruby sockets set sync to true . This skips Ruby's internal buffering 2 which
would otherwise add another layer of buffers to the mix.

Why buffer at all?

All layers of IO buffering are in place for performance reasons, usually offering
big improvements in performance.

Sending data across the network is slow 3, really slow. Buffering allows calls to
write to return almost immediately. Then, behind the scenes, the kernel can
collect all the pending writes, group them and optimize when they're sent for
maximum performance to avoid flooding the network. At the network level,
sending many small packets incurs a lot overhead, so the kernel batches small
writes together into larger ones.

How Much to Write?How Much to Write?
Given what we now know about buffering we can pose this question again: should I do
many small write calls or one big write call?

Thanks to buffers, we don't really have to think about it. Generally you'll get better
performance from writing all that you have to write and letting the kernel normalize
performance by splitting things up or chunking them together. If you're doing a really

2. http://jstorimer.com/2012/09/25/ruby-io-buffers.html
3. https://gist.github.com/2841832

wwtcps | 68

http://jstorimer.com/2012/09/25/ruby-io-buffers.html
https://gist.github.com/2841832

big write , think files or big data, then you'd be better off splitting up the data, lest all
that stuff gets moved into RAM.

In the general case, you'll get the best performance from writing everything you have toyou'll get the best performance from writing everything you have to
write in one gowrite in one go and letting the kernel decide how to chunk the data. Obviously, the only
way to be certain is to profile your application.

Read BuffersRead Buffers
It's not just writes, reads are buffered too.

When you ask Ruby to read data from a TCP connection and pass a maximum read
length, Ruby may actually be able to receive more data than your limit allows.

In this case that 'extra' data will be stored in Ruby's internal read buffers. On the next
call to read , Ruby will look first in its internal buffers for pending data before asking the
OS kernel for more data.

How Much to Read?How Much to Read?
The answer to this question isn't quite as straightforward as it was with write buffering,
but we'll take a look at the issues and best practices.

Since TCP provides a stream of data we don't know how much is coming from the
sender. This means that we'll always be making a guess when we decide on a read
length.

wwtcps | 69

Why not just specify a huge read length to make sure we always get all of the available
data? When we specify our read length the kernel allocates some memory for us. If we
specify more than we need, we end up allocating memory that we don't use. This is
wasted resources.

If we specify a small read length which requires many reads to consume all of the data,
we incur overhead for each system call.

So, as with most things, you'll get the best performance if you tune your program based
on the data it receives. Going to receive lots of big data chunks? Then you should
probably specify a bigger read length.

There's no silver bullet answer but I've cheated a bitI've cheated a bit and took a survey of various Ruby
projects that use sockets to see what the consensus on this question is.

I've looked at Mongrel, Unicorn, Puma, Passenger, and Net::HTTP, and all of them do a
readpartial(1024 * 16) . All of these web projects use 16KB as their read length.

Conversely, redis-rb uses 1KB as its read length.

You'll always get best performance through tuning your server to the data at hand but,
when in doubt, 16KB seems to be a generally agreed-upon read length.

wwtcps | 70

Chapter 9

Our First Client/Server
Whew.

We've now looked at establishing connections and a whole lot of information about
exchanging data. Up until now we've mostly been working with very small, self-
contained bits of example code. It's time to put everything we've seen together into a
network server and client.

The ServerThe Server
For our server we're going to write the next NoSQL solution that no one has heard of.
It's just going to be a network layer on top of a Ruby hash. It's aptly named CloudHash .

Here's the full implementation of a simple CloudHash server:

wwtcps | 71

./code/cloud_hash/server.rb
require 'socket'

module CloudHash
class Server

def initialize(port)
Create the underlying server socket.
@server = TCPServer.new(port)
puts "Listening on port #{@server.local_address.ip_port}"
@storage = {}

end

def start
The familiar accept loop.
Socket.accept_loop(@server) do |connection|

handle(connection)
connection.close

end
end

def handle(connection)
Read from the connection until EOF.
request = connection.read

Write back the result of the hash operation.
connection.write process(request)

end

Supported commands:
SET key value
GET key
def process(request)

command, key, value = request.split

wwtcps | 72

case command.upcase
when 'GET'

@storage[key]

when 'SET'
@storage[key] = value

end
end

end
end

server = CloudHash::Server.new(4481)
server.start

The ClientThe Client
And here's a simple client:

wwtcps | 73

./code/cloud_hash/client.rb
require 'socket'

module CloudHash
class Client

class << self
attr_accessor :host, :port

end

def self.get(key)
request "GET #{key}"

end

def self.set(key, value)
request "SET #{key} #{value}"

end

def self.request(string)
Create a new connection for each operation.
@client = TCPSocket.new(host, port)
@client.write(string)

Send EOF after writing the request.
@client.close_write

Read until EOF to get the response.
@client.read

end
end

end

CloudHash::Client.host = 'localhost'
CloudHash::Client.port = 4481

wwtcps | 74

puts CloudHash::Client.set 'prez', 'obama'
puts CloudHash::Client.get 'prez'
puts CloudHash::Client.get 'vp'

Put It All TogetherPut It All Together
Let's stitch it all together!

Boot the server:

$ ruby code/cloud_hash/server.rb

Remember that the data structure is a Hash. Running the client will run the following
operations:

$ tail -4 code/cloud_hash/client.rb
puts CloudHash::Client.set 'prez', 'obama'
puts CloudHash::Client.get 'prez'
puts CloudHash::Client.get 'vp'

$ ruby code/cloud_hash/client.rb

wwtcps | 75

ThoughtsThoughts
So what have we done here? We've wrapped a Ruby hash with a network API, but not
even the whole Hash API, just the getter/setter. A good chunk of the code is boilerplate
networking stuff, so it should be easy to see how you could extend this example to
expose more of the Hash API.

I commented the code so you can get an idea of why things are done the way they are, I
made sure to stick to concepts that we've already seen, such as establishing
connections, EOF, etc.

But overall, CloudHash is kind of a kludge. In the last few chapters we've gone over the
basics of establishing connections and exchanging data. Both of those things were
applied here. What's missing from this example is best practices about architecture
patterns, design, and some advanced features we haven't seen yet.

For example, notice that the client has to initiate a new connection for each request it
sends? If you wanted to send a bunch of requests all in a row,, each would require its
own connection. The current server design requires this. It processes one command
from the client socket and then closes it.

There's no reason why this needs to be the case. Establishing connections incurs
overhead and it's certainly possible for CloudHash to handle multiple requests on the
same connection.

This can be remedied in a few different ways. The client/server could communicate
using a simple message protocol that doesn't require sending EOF to delimit messages.
This change would allow for multiple requests on a single connection but the server
will still process each client connection in sequence. If one client is sending a lot of

wwtcps | 76

requests or leaving their connection open for a long time, then other clients will not be
able to interact with the server.

We can resolve this by building some form of concurrency into the server. The rest of
the book builds on the basic knowledge you have thus far and focuses on helping you
write efficient, understandable, and sane network programs. CloudHash , as it stands, does
not provide a good example of how socket programming should be done.

wwtcps | 77

Chapter 10

Socket Options
To kick off this set of chapters on advanced techniques we'll look at socket options.
Socket options are a low-level way to configure system-specific behaviour on sockets. So
low-level, in fact, that Ruby doesn't provide a fancy wrapper around the system calls.

SO_TYPESO_TYPE
Let's begin by having a look at retrieving a socket option: the socket type.

./code/snippets/getsockopt.rb
require 'socket'

socket = TCPSocket.new('google.com', 80)
Get an instance of Socket::Option representing the type of the socket.
opt = socket.getsockopt(Socket::SOL_SOCKET, Socket::SO_TYPE)

Compare the integer representation of the option to the integer
stored in Socket::SOCK_STREAM for comparison.
opt.int == Socket::SOCK_STREAM #=> true
opt.int == Socket::SOCK_DGRAM #=> false

A call to getsockopt returns an instance of Socket::Option . When working at this level
everything resolves to integers. So SocketOption#int gets the underlying integer associated
with the return value.

wwtcps | 78

In this case I'm retrieving the socket type (remember specifying this back when
creating our first socket?), so I compare the int value against the various Socket type
constants and find that it's a STREAM socket.

Remember that Ruby always offers memoized symbols in place of these constants. The
above can also be written as:

./code/snippets/getsockopt_wrapper.rb
require 'socket'

socket = TCPSocket.new('google.com', 80)
Use the symbol names rather than constants.
opt = socket.getsockopt(:SOCKET, :TYPE)

SO_REUSE_ADDRSO_REUSE_ADDR
This is a common option that every server should set.

The SO_REUSE_ADDR option tells the kernel that it's OK for another socket to bind to the
same local address that the server is using if it's currently in the TCP TIME_WAIT state.

wwtcps | 79

TIME_WAIT state?

This can come about when you close a socket that has pending data in its buffers.
Remember calling write only guarantees that your data has entered the buffer
layers? When you close a socket its pending data is not discarded.

Behind the scenes, the kernel leaves the connection open long enough to send
out that pending data. This means that it actually has to send the data, and then
wait for acknowledgement of receipt from the receiving end in case some data
needs retransmitting.

If you close a server with pending data and immediately try to bind another
socket on the same address (such as if you reboot the server immediately) then
an Errno::EADDRINUSE will be raised unless the pending data has been accounted
for. Setting SO_REUSE_ADDR will circumvent this problem and allow you to bind to
an address still in use by another socket in the TIME_WAIT state.

Here's how to switch it on:

./code/snippets/reuseaddr.rb
require 'socket'

server = TCPServer.new('localhost', 4481)
server.setsockopt(:SOCKET, :REUSEADDR, true)

server.getsockopt(:SOCKET, :REUSEADDR) #=> true

wwtcps | 80

Note that TCPServer.new , Socket.tcp_server_loop and friends enable this option by
default.

For a complete listing of socket options available on your system look at setsockopt(2).

System Calls From This chapterSystem Calls From This chapter
• Socket#setsockopt -> setsockopt(2)

• Socket#getsockopt -> getsockopt(2) :

wwtcps | 81

Chapter 11

Non-blocking IO
This chapter is about non-blocking IO. Note: this is different from asynchronous or
evented IO. If you don't know the difference, it should become clear as you progress
through the rest of the book.

Non-blocking IO goes hand-in-hand with the next chapter on Multiplexing Connections,
but we'll look at this first in isolation because it can be useful on its own.

Non-blocking ReadsNon-blocking Reads
Do you remember a few chapters back when we looked at read ? I noted that read blocked
until it received EOF or was able to receive a minimum number of bytes. This may result
in a lot of blocking when a client doesn't send EOF. This blocking behaviour can be
partly circumvented by readpartial , which returns any available data immediately. But
readpartial will still block if there's no data available. For a read operation that will never
block you want read_nonblock .

Much like readpartial , read_nonblock requires an Integer argument specifying the maximum
number of bytes to read. Remember that read_nonblock , like readpartial , might return less
than the maximum amount of bytes if that's what's available. It works something like
this:

wwtcps | 82

./code/snippets/read_nonblock.rb
require 'socket'

Socket.tcp_server_loop(4481) do |connection|
loop do

begin
puts connection.read_nonblock(4096)

rescue Errno::EAGAIN
retry

rescue EOFError
break

end
end

connection.close
end

Boot up the same client we used previously that never closes its connection:

$ tail -f /var/log/system.log | nc localhost 4481

Even when there's no data being sent to the server the call to read_nonblock is still
returning immediately. In fact, it's raising an Errno::EAGAIN exception. Here's what my
manpages have to say about EAGAIN :

The file was marked for non-blocking I/O, and no data were ready to be
read.

Makes sense. This differs from readpartial which would have just blocked in that
situation.

wwtcps | 83

So what should you do when you get this error and your socket would otherwise block?
In this example we entered a busy loop and continued to retry over and over again. This
was just for demonstration purposes and isn't the proper way to do things.

The proper way to retry a blocked read is using IO.select :

begin
connection.read_nonblock(4096)

rescue Errno::EAGAIN
IO.select([connection])
retry

end

This achieves the same effect as spamming read_nonblock with retry , but with less wasted
cycles. Calling IO.select with an Array of sockets as the first argument will block until
one of the sockets becomes readable. So, retry will only be called when the socket has
data available for reading. We'll cover IO.select in more detail in the next chapter.

In this example we've re-implemented a blocking read method using non-blocking
methods. This, in itself, isn't useful. But using IO.select gives the flexibility to monitor
multiple sockets simultaneously or periodically check for readability while doing other
work.

wwtcps | 84

When would a read block?

The read_nonblock method first checks Ruby's internal buffers for any pending
data. If there's some there it's returned immediately.

It then asks the kernel if there's any data available for reading using select(2). If
the kernel says that there's some data available, whether it be in the kernel
buffers or over the network, that data is then consumed and returned. Any other
condition would cause a read(2) to block and, thus, raise an exception from
read_nonblock .

Non-blocking WritesNon-blocking Writes
Non-blocking writes have some very important differences from the write call we saw
earlier. The most notable is that it's possible for write_nonblock to return a partial write,
whereas write will always take care of writing all of the data that you send it.

Let's boot up a throwaway server using netcat to show this behaviour:

$ nc -l localhost 4481

Then we'll boot up this client that makes use of write_nonblock :

wwtcps | 85

./code/snippets/write_nonblock.rb
require 'socket'

client = TCPSocket.new('localhost', 4481)
payload = 'Lorem ipsum' * 10_000

written = client.write_nonblock(payload)
written < payload.size #=> true

When I run those two programs against each other, I routinely see true being printed
out from the client side. In other words it's returning an Integer that's less than the full
size of the payload data. The write_nonblock method returned because it entered some
situation where it would block, so it didn't write any more data and returned an Integer,
letting us know how much was written. It's now our responsibility to write the rest of
the data that remains unsent.

The behaviour of write_nonblock is the same as the write(2) system call. It writes as much
data as it can and returns the number of bytes written. This differs from Ruby's write

method which may call write(2) several times to write all of the data requested.

So what should you do when one call couldn't write all of the requested data? Try again
to write the missing portion, obviously. But don't do it right away. If the underlying
write(2) would still block then you'll get an Errno::EAGAIN exception raised. The answer
lies again with IO.select , it can tell us when a socket is writable, meaning it can write
without blocking.

wwtcps | 86

./code/snippets/retry_partial_write.rb
require 'socket'

client = TCPSocket.new('localhost', 4481)
payload = 'Lorem ipsum' * 10_000

begin
loop do

bytes = client.write_nonblock(payload)

break if bytes >= payload.size
payload.slice!(0, bytes)
IO.select(nil, [client])

end

rescue Errno::EAGAIN
IO.select(nil, [client])
retry

end

Here we make use of the fact that calling IO.select with an Array of sockets as the second
argument will block until one of the sockets becomes writable.

The loop in the example deals properly with partial writes. When write_nonblock returns
an Integer less than the size of the payload we slice that data from the payload and go
back around the loop when the socket becomes writable again.

wwtcps | 87

When would a write block?

The underlying write(2) can block in two situations:

1. The receiving end of the TCP connection has not yet acknowledged
receipt of pending data, and we've sent as much data as is allowed. Due
to the algorithms TCP uses for congestion control, it ensures that the
network is never flooded with packets. If the data is taking a long time to
reach the receiving end of the TCP connection, then care is taken not to
flood the network with more data than can be handled.

2. The receiving end of the TCP connection cannot yet handle more data.
Even once the other end acknowledges receipt of the data it still must
clear its data 'window' in order that it may be refilled with more data.
This refers to the kernel's read buffers. If the receiving end is not
processing the data it's receiving then the congestion control algorithms
will force the sending end to block until the client is ready for more data.

Non-blocking AcceptNon-blocking Accept
There are non-blocking variants of other methods, too, besides read and write , though
they're the most commonly used.

An accept_nonblock is very similar to a regular accept . Remember how I said that accept just
pops a connection off of the listen queue? Well if there's nothing on that queue then
accept would block. In this situation accept_nonblock would raise an Errno::EAGAIN rather
than blocking.

wwtcps | 88

Here's an example:

./code/snippets/accept_nonblock.rb
require 'socket'

server = TCPServer.new(4481)

loop do
begin

connection = server.accept_nonblock
rescue Errno::EAGAIN

do other important work
retry

end
end

Non-blocking ConnectNon-blocking Connect
Think you can guess what the connect_nonblock method does by now? Then you're in for a
surprise! connect_nonblock behaves a bit differently than the other non-blocking IO
methods.

Whereas the other methods either complete their operation or raise an appropriate
exception, connect_nonblock leaves its operation in progress and raises an exception.

If connect_nonblock cannot make an immediate connection to the remote host, then it
actually lets the operation continue in the background and raises Errno::EINPROGRESS to
notify us that the operation is still in progress. In the next chapter we'll see how we can
be notified when this background operation completes. For now, a quick example:

wwtcps | 89

./code/snippets/connect_nonblock.rb
require 'socket'

socket = Socket.new(:INET, :STREAM)
remote_addr = Socket.pack_sockaddr_in(80, 'google.com')

begin
Initiate a nonblocking connection to google.com on port 80.
socket.connect_nonblock(remote_addr)

rescue Errno::EINPROGRESS
Operation is in progress.

rescue Errno::EALREADY
A previous nonblocking connect is already in progress.

rescue Errno::ECONNREFUSED
The remote host refused our connect.

end

wwtcps | 90

Chapter 12

Multiplexing Connections
Connection multiplexing refers to working with multiple active sockets at the same
time. This doesn't specifically refer to doing any work in parallel and is not related to
multi-threading. An example will make it clear.

Given the techniques seen so far, let's imagine how we might write a server that needs
to process available data on several TCP connections at any given time. We'd probably
use our newfound knowledge of non-blocking IO to keep ourselves from getting stuck
blocking on any particular socket.

wwtcps | 91

./code/snippets/naive_multiplexing.rb
Given an Array of connections.
connections = [<TCPSocket>, <TCPSocket>, <TCPSocket>]

We enter an endless loop.
loop do

For each connection...
connections.each do |conn|

begin
Attempt to read from each connection in a non-blocking way,
processing any data received, otherwise trying the next
connection.
data = conn.read_nonblock(4096)
process(data)

rescue Errno::EAGAIN
end

end
end

Does this work? It does! But it's a very busy loop.

Each call to read_nonblock uses at least one system call and the server will be wasting a lot
of cycles trying to read data when there is none. Remember that I said read_nonblock

checks if there's any data available using select(2)? Well, there's a Ruby wrapper so that
we can use select(2) directly for our own purposes.

select(2)select(2)
Here's the saner method of processing available data on multiple TCP connections:

wwtcps | 92

./code/snippets/sane_multiplexing.rb
Given an Array of connections.
connections = [<TCPSocket>, <TCPSocket>, <TCPSocket>]

loop do
Ask select(2) which connections are ready for reading.
ready = IO.select(connections)

Read data only from the available connections.
readable_connections = ready[0]
readable_connections.each do |conn|

data = conn.readpartial(4096)
process(data)

end
end

This example uses IO.select to greatly reduce the overhead of handling multiple
connections. The whole purpose of IO.select is take in some IO objects and tell you which
of those are ready to be read from or written to so you don't have to take shots in the
dark like we did above.

Let's review some properties of IO.select .

It tells you when file descriptors are ready for reading or writingIt tells you when file descriptors are ready for reading or writing. In the above example
we only passed one argument to IO.select , but there are actually three important Arrays
that IO.select takes as arguments.

./code/snippets/select_args.rb
for_reading = [<TCPSocket>, <TCPSocket>, <TCPSocket>]
for_writing = [<TCPSocket>, <TCPSocket>, <TCPSocket>]

IO.select(for_reading, for_writing, for_reading)

wwtcps | 93

The first argument is an Array of IO objects which you want to read from. The second
argument is an Array of IO objects which you want to write to. The third argument is an
Array of IO objects for which you are interested in exceptional conditions. The vast
majority of applications can ignore the third argument unless you're interested in out-
of-band data (more on that in the Urgent Data chapter). Note that even if you're
interested in reading from a single IO object you still must put it in an Array to pass to
IO.select .

It returns an Array of ArraysIt returns an Array of Arrays. IO.select returns a nested array with three elements that
correspond to its argument list. The first element will contain IO objects that can be
read from without blocking. Note that this will be a subset of the Array of IO objects
passed in as the first argument. The second element will contain IO objects that can be
written to without blocking, and the third element will contain IO objects which have
applicable exceptional conditions.

./code/snippets/select_returns.rb
for_reading = [<TCPSocket>, <TCPSocket>, <TCPSocket>]
for_writing = [<TCPSocket>, <TCPSocket>, <TCPSocket>]

ready = IO.select(for_reading, for_writing, for_reading)

One Array is returned for each Array passed in as an argument.
In this case none of the connections in for_writing were writable
and one of connections in for_reading was readable.
p ready #=> [[<TCPSocket>], [], []]

It's blocking.It's blocking. IO.select is a synchronous method call. Using it like we've seen thus far will
cause it to block until the status of one of the passed-in IO objects changes. At this point
it will return immediately. If multiple statuses have changed then all will be returned
via the nested Array.

wwtcps | 94

But IO.select will also take a fourth argument, a timeout value in seconds. This will
prevent IO.select from blocking indefinitely. Pass in an Integer or Float value to specify a
timeout. If the timeout is reached before any of the IO statuses have changed, IO.select

will return nil .

./code/snippets/select_timeout.rb
for_reading = [<TCPSocket>, <TCPSocket>, <TCPSocket>]
for_writing = [<TCPSocket>, <TCPSocket>, <TCPSocket>]

timeout = 10
ready = IO.select(for_reading, for_writing, for_reading, timeout)

In this case IO.select didn't detect any status changes in 10 seconds,
thus returned nil instead of a nested Array.
p ready #=> nil

You can also pass plain Ruby objects to IO.select , so long as they respond to to_io

and return an IO object. This is useful so that you don't need to maintain a
mapping of IO object -> your domain object. IO.select can work with your plain
Ruby objects if they implement this to_io method.

Events Other Than Read/WriteEvents Other Than Read/Write
So far we've just looked at monitoring readable and writable state with IO.select , but it
can actually be shoehorned into a few other places.

wwtcps | 95

EOF

If you're monitoring a socket for readability and it receives an EOF, it will be returned
as part of the readable sockets Array. Depending on which variant of read(2) you use at
that point you might get an EOFError or nil when trying to read from it.

Accept

If you're monitoring a server socket for readability and it receives an incoming
connection, it will be returned as part of the readable sockets Array. Obviously, you'll
need to have logic to handle these kinds of sockets specially and use accept rather than
read .

Connect

This one is probably the most interesting of the bunch. In the last chapter we looked at
connect_nonblock and noted that it raised Errno::EINPROGRESS if it couldn't connect
immediately. Using IO.select we can figure out if that background connect has yet
completed:

wwtcps | 96

./code/snippets/multiplexing_connect.rb
require 'socket'

socket = Socket.new(:INET, :STREAM)
remote_addr = Socket.pack_sockaddr_in(80, 'google.com')

begin
Initiate a nonblocking connection to google.com on port 80.
socket.connect_nonblock(remote_addr)

rescue Errno::EINPROGRESS
IO.select(nil, [socket])

begin
socket.connect_nonblock(remote_addr)

rescue Errno::EISCONN
Success!

rescue Errno::ECONNREFUSED
Refused by remote host.

end
end

The first part of this snippet is the same as last chapter. Try to do a connect_nonblock and
rescue Errno::EINPROGRESS , which signifies that the connect is happening in the
background. Then we enter the new code.

We ask IO.select to monitor the socket for changes to its writable status. When that
changes, we know that the underlying connect is complete. In order to figure out the
status, we just try connect_nonblock again! If it raises Errno::EISCONN this tells us that the
socket is already connected to the remote host. Success! A different exception signifies
an error condition in connecting to the remote host.

wwtcps | 97

This fancy bit of code actually emulates a blocking connect . Why? Partly to show you
what's possible, but you can also imagine sticking your own code into this process. You
could initiate the connect_nonblock , go off and do some other work, then call IO.select with a
timeout. If the underlying connect isn't finished then you can continue doing other
work and check IO.select again later.

We can actually use this little technique to build a pretty simple port scanner 2 in Ruby.
A port scanner attempts to make connections to a range of ports on a remote host and
tells you which ones were open to connections.

2. http://en.wikipedia.org/wiki/Port_scanner

wwtcps | 98

http://en.wikipedia.org/wiki/Port_scanner

./code/port_scanner.rb
require 'socket'

Set up the parameters.
PORT_RANGE = 1..128
HOST = 'archive.org'
TIME_TO_WAIT = 5 # seconds

Create a socket for each port and initiate the nonblocking
connect.
sockets = PORT_RANGE.map do |port|

socket = Socket.new(:INET, :STREAM)
remote_addr = Socket.sockaddr_in(port, 'archive.org')

begin
socket.connect_nonblock(remote_addr)

rescue Errno::EINPROGRESS
end

socket
end

Set the expiration.
expiration = Time.now + TIME_TO_WAIT

loop do
We call IO.select and adjust the timeout each time so that we'll never
be waiting past the expiration.
_, writable, _ = IO.select(nil, sockets, nil, expiration - Time.now)
break unless writable

writable.each do |socket|
begin

socket.connect_nonblock(socket.remote_address)

wwtcps | 99

rescue Errno::EISCONN
If the socket is already connected then we can count this as a success.
puts "#{HOST}:#{socket.remote_address.ip_port} accepts connections..."
Remove the socket from the list so it doesn't continue to be
selected as writable.
sockets.delete(socket)

rescue Errno::EINVAL
sockets.delete(socket)

end
end

end

This bit of code takes advantage of connect_nonblock by initiating several hundred
connections at once. It then monitors all of these using IO.select and ultimately verifies
which we were able to connect to successfully. Here's the output I got when running
this against archive.org:

archive.org:25 accepts connections...
archive.org:22 accepts connections...
archive.org:80 accepts connections...
archive.org:443 accepts connections...

Notice that the results aren't necessarily in order. The first connections that finish the
process are printed first. This a pretty common group of open ports, port 25 is reserved
for SMTP, port 22 for SSH, port 80 for HTTP and port 443 for HTTPS.

wwtcps | 100

High Performance MultiplexingHigh Performance Multiplexing
IO.select ships with Ruby's core library. But it's the only solution for multiplexing that
ships with Ruby. Most modern OS kernels support multiple methods of multiplexing.
Almost invariably, select(2) is the oldest and least performing of these methods.

IO.select will perform well with few connections, but its performance is linear to the
number of connections it monitors. As it monitors more connections its performance
will continue to degrade. Moreover, the select(2) system call is limited by something
called FD_SETSIZE , a C macro that's defined as part of your local C library. select(2) is
unable to monitor a file descriptor number higher than the number in FD_SETSIZE (1024
on most systems). So IO.select will be limited to monitoring at most 1024 IO objects.

There are, of course, alternatives.

The poll(2) system call provides some slight differences over select(2) but is more or less
on par. The (Linux) epoll(2) and (BSD) kqueue(2) system calls provide a more
performing, modern alternative to select(2) and poll(2). For example, a high-
performance networking toolkit like EventMachine will favour epoll(2) or kqueue(2)
where possible.

Rather than trying to give examples of these particular system calls I'll point you to the
nio4r Ruby gem 3, which provides a common interface to the all of these multiplexing
solutions, favouring the most performant one available on your system.

3. https://github.com/tarcieri/nio4r

wwtcps | 101

https://github.com/tarcieri/nio4r

Chapter 13

Nagle's algorithm
Nagle's algorithm is a so-called optimization applied to all TCP connections by default.

This optimization is most applicable to applications which don't do buffering and send
very small amounts of data at a time. As such, it's often disabled by servers where those
criteria don't apply. Let's review the algorithm:

After a program writes to a socket there are three possible outcomes:

1. If there's sufficient data in the local buffers to comprise an entire TCP packet
then send it all immediately.

2. If there's no pending data in the local buffers and no pending acknowledgement
of receipt from the receiving end, then send it immediately.

3. If there's a pending acknowledgement of receipt from the other end and not
enough data to comprise an entire TCP packet, then put the data into the local
buffer.

This algorithm guards against sending many tiny TCP packets. It was originally
designed to combat protocols like telnet where one key stroke is entered at a time and
otherwise each character could be sent across the network without delay.

If you're working with a protocol like HTTP where the request/response are usually
sufficiently large enough to comprise at least one TCP packet, this algorithm will
typically have have no effect except to slow down the last packet sent. The algorithm is
meant to guard against shooting yourself in the foot during very specific situations,

wwtcps | 102

such as implementing telnet. Given Ruby's buffering and the most common kinds of
protocols implemented on TCP, you probably want to disable this algorithm.

For example, every Ruby web server disables this option. Here's how it can be done:

./code/snippets/disable_nagle.rb
require 'socket'

server = TCPServer.new(4481)

Disable Nagle's algorithm. Tell the server to send with 'no delay'.
server.setsockopt(Socket::IPPROTO_TCP, Socket::TCP_NODELAY, 1)

wwtcps | 103

Chapter 14

Framing Messages
One thing that we haven't talked about yet is how to format the messages that are
exchanged between server and client.

One problem we had with CloudHash was that the client had to open a new connection for
every command it wanted to send to the server. The main reason for this is that the
client/server had no agreed-upon way to frame the beginning and end of messages, so
they had to fall back to using EOF to signify the end of a message.

While this technically 'got the job done', it wasn't ideal. Opening a new connection for
each command adds unnecessary overhead. It's certainly possible to send multiple
messages over the same TCP connection, but if you're going to leave the connection
open, you need some way of signaling that one message is ending and another is
beginning.

This idea of reusing connections across multiple messages is the same concept
behind the familiar keep-alive feature of HTTP. By leaving the connection open
for multiple requests (and having an agreed-upon method of framing messages)
resources can be saved by not opening new connections.

There are, literally, an infinite number of choices for framing your messages. Some are
very complicated; some are simple. It all depends on how you want to format your
messages.

wwtcps | 104

Protocol vs. Message

I keep talking about messages, which I see as distinct from protocols. For
example, the HTTP protocol defines both the message boundaries (a series of
newlines) as well as a protocol for the content of the message involving a request
line, headers, etc.

A protocol defines how your messages should be formatted, whereas this chapter
is concerned with how to separate your messages from one another on the TCP
stream.

Using newlines

Using newlines is a really simple way to frame your messages. If you know, for certain,
that your application client and server will be running on the same operating system,
you can even fall back to using IO#gets and IO#puts on your sockets to send messages
with newlines.

Let's rewrite the relevant part of the CloudHash server to frame messages with newlines
instead of EOFs:

wwtcps | 105

def handle(connection)
loop do

request = connection.gets
break if request == 'exit'
connection.puts process(request)

end
end

The relevant changes to the server are just the addition of the loop and the change from
read to gets . In this way the server will process as many requests as the client wishes to
send until it sends the 'exit' request.

A more robust approach would be to use IO.select and wait for events on the connection.
Currently the server would come crashing down if the client socket disconnected
without first sending the 'exit' request.

The client would then send its requests with something like:

wwtcps | 106

def initialize(host, port)
@connection = TCPSocket.new(host, port)

end

def get
request "GET #{key}"

end

def set
request "SET #{key} #{value}"

end

def request(string)
@connection.puts(string)

Read until receiving a newline to get the response.
@connection.gets

end

Note that the client no longer uses class methods. Now that our connection can persist
across requests, we can encapsulate a single connection in an instance of an object and
just call methods on that object.

wwtcps | 107

Newlines and Operating Systems

Remember that I said it was permissible to use gets and puts if you're certain that
the client/server will run on the same operating system? Let me explain why.

If you look at the documentation for gets and puts it says that it uses $/ as the
default line delimiter. This variable holds the value \n on Unix systems but holds
the value of \r\n on Windows systems. Hence my warning, one system using puts

may not be compatible with another using gets . If you use this method then
ensure that you pass an argument to those methods with an explicit line
delimiter so that they're compatible.

One real-world protocol that uses newlines to frame messages is HTTP. Here's an
example of a short HTTP request:

GET /index.html HTTP/1.1\r\n
Host: www.example.com\r\n
\r\n

In this example the newlines are made explicit with the escape sequence \r\n . This
sequence of newlines must be respected by any HTTP client/server, regardless of
operating system.

This method certainly works, but it's not the only way.

wwtcps | 108

Using A Content Length

Another method of framing messages is to specify a content length.

With this method the sender of the message first denotes the size of their message,
packs that into a fixed-width integer representation and sends that over the connection,
immediately followed by the message itself. The receiver of the message will read the
fixed-width integer to begin with. This gets them the message size. Then the receiver
can read the exact number of bytes specified in the message size to get the whole
message.

Here's how we might change the relevant part of the CloudHash server to use this
method:

This gets us the size of a random fixed-width integer.
SIZE_OF_INT = [11].pack('i').size

def handle(connection)
The message size is packed into a fixed-width. We
read it and unpack it.
packed_msg_length = connection.read(SIZE_OF_INT)
msg_length = packed_msg_length.unpack('i').first

Fetch the full message given its length.
request = connection.read(msg_length)
connection.write process(request)

end

The client would send a request using something like:

wwtcps | 109

payload = 'SET prez obama'

Pack the message length into a fixed-width integer.
msg_length = payload.size
packed_msg_length = [msg_length].pack('i')

Write the length of the message, followed immediately
by the message itself.
connection.write(packed_msg_length)
connection.write(payload)

The client packs the message length as a native endian integer. This is important
because it guarantees that any given integer will be packed into the same number of
bytes. Without this guarantee the server wouldn't know whether to read a 2, 3, 4, or
even higher digit number to represent the message size. Using this method the client/
server always communicate using the same number of bytes for the message size.

As you can see it's a bit more code, but this method doesn't use any wrapper methods
like gets or puts , just the basic IO operations like read and write .

wwtcps | 110

Chapter 15

Timeouts
Timeouts are all about tolerance. How long are you willing to wait for your socket to
connect? To read? To write?

All of these answers are a function of your tolerance. High performance network
programs typically aren't willing to wait for operations that aren't going to finish. It's
assumed that if your socket can't write its data in the first 5 seconds then there's a
problem and some other behaviour should take over.

Unusable OptionsUnusable Options
If you've spent any time reading Ruby code you've probably seen the timeout library that
comes with the standard library. Although that library tends to get used with socket
programming in Ruby, I'm not even going to talk about it here because there are better
ways! The timeout library provides a general purpose timeout mechanism, but your
operating system comes with socket-specific timeout mechanisms that are more
performing and more intuitive.

Your operating system also offers native socket timeouts that can be set via the
SNDTIMEO and RCVTIMEO socket options. But, as of Ruby 1.9, this feature is no longer
functional. Due to the way that Ruby handles blocking IO in the presence of threads, it
wraps all socket operations around a poll(2), which mitigates the effect of the native
socket timeouts. So those are unusable too.

wwtcps | 111

What's left?

IO.selectIO.select
Ah, let's call IO.select old faithful, eh? So many uses.

We've already seen how to use IO.select in previous chapters. Here's how you can use it
for timeouts.

wwtcps | 112

./code/snippets/read_timeout.rb
require 'socket'
require 'timeout'

timeout = 5 # seconds

Socket.tcp_server_loop(4481) do |connection|

begin
Initiate the initial read(2). This is important because
it requires data be requested on the socket and circumvents
a select(2) call when there's already data available to read.
connection.read_nonblock(4096)

rescue Errno::EAGAIN
Monitor the connection to see if it becomes readable.
if IO.select([connection], nil, nil, timeout)

IO.select will actually return our socket, but we
don't care about the return value. The fact that
it didn't return nil means that our socket is readable.
retry

else
raise Timeout::Error

end
end

connection.close
end

I actually required timeout in this case just to get access to that handy Timeout::Error

constant.

wwtcps | 113

Accept TimeoutAccept Timeout
As we've seen before accept works very nicely with IO.select . If you need to do a timeout
around accept it would look just like it did for read .

server = TCPServer.new(4481)
timeout = 5 # seconds

begin
server.accept_nonblock

rescue Errno::EAGAIN
if IO.select([server], nil, nil, timeout)

retry
else

raise Timeout::Error
end

end

Connect TimeoutConnect Timeout
In this case, doing a timeout around a connect works much like the other examples
we've seen.

wwtcps | 114

./code/snippets/connect_timeout.rb
require 'socket'
require 'timeout'

socket = Socket.new(:INET, :STREAM)
remote_addr = Socket.pack_sockaddr_in(80, 'google.com')
timeout = 5 # seconds

begin
Initiate a nonblocking connection to google.com on port 80.
socket.connect_nonblock(remote_addr)

rescue Errno::EINPROGRESS
Indicates that the connect is in progress. We monitor the
socket for it to become writable, signaling that the connect
is completed.
#
Once it retries the above block of code it
should fall through to the EISCONN rescue block and end up
outside this entire begin block where the socket can be used.
if IO.select(nil, [socket], nil, timeout)

retry
else

raise Timeout::Error
end

rescue Errno::EISCONN
Indicates that the connect is completed successfully.

end

socket.write("ohai")
socket.close

wwtcps | 115

These IO.select based timeout mechanisms are commonly used, even in Ruby's standard
library, and offer more stability than something like native socket timeouts.

wwtcps | 116

Chapter 16

DNS Lookups
Timeouts are great to keep for your own code under control, but there are factors that
you have less control of.

Take this example client connection:

./code/snippets/client_easy_way.rb
require 'socket'

socket = TCPSocket.new('google.com', 80)

We know that inside that constructor Ruby makes a call to connect . Since we're passing a
hostname, rather than IP address, Ruby needs to do a DNS lookup to resolve that
hostname to a unique address it can connect to.

The kicker? A slow DNS server can block your entire Ruby process. This is a bummer
for multi-threaded environments.

MRI and the GIL

The standard Ruby implementation (MRI) has something called a global interpreter
lock (GIL). The GIL is there for safety. It ensures that the Ruby interpreter is only ever
doing one potentially dangerous thing at a time. This really comes into play in a multi-
threaded environment. While one thread is active all other threads are blocked. This
allows MRI to be written with safer, simpler code.

wwtcps | 117

Thankfully, the GIL does understand blocking IO. If you have a thread that's doing
blocking IO (eg. a blocking read), MRI will release the GIL and let another thread
continue execution. When the blocking IO call is finished, the thread lines up for
another turn to execute.

MRI is a little less forgiving when it comes to C extensions. Any time that a library uses
the C extension API, the GIL blocks any other code from execution. There is no
exception for blocking IO here, if a C extension is blocking on IO then all other threads
will be blocked.

The key to the issue at hand here is that, out of the box, Ruby uses a C extension for
DNS lookups. Hence, if that DNS lookup is blocking for a long time MRI will not release
the GIL.

resolvresolv
Thankfully, Ruby provides a solution to this in the standard library. The 'resolv' library
provides a pure-Ruby replacement for DNS lookups. This allows MRI to release the GIL
for long-blocking DNS lookups. This is a big win for multi-threaded environments.

The 'resolv' library has its own API, but the standard library also provides a library that
monkeypatches the Socket classes to use 'resolv'.

require 'resolv' # the library
require 'resolv-replace' # the monkey patch

I recommend this whenever you're doing socket programming in a multi-threaded
environment.

wwtcps | 118

Chapter 17

SSL Sockets
SSL provides a mechanism for exchanging data securely over sockets using public key
cryptography.

SSL sockets don't replace TCP sockets, but they allow you to 'upgrade' plain ol' insecure
socket to secure SSL sockets. You can add a secure layer, if you will, on top of your TCP
sockets.

Note that a socket can be upgraded to SSL, but a single socket can't do both SSL and
non-SSL communication. When using SSL, end-to-end communication with the receiver
will all be done using SSL. Otherwise there's no security.

For services that need to be available over SSL, as well as insecure over plain TCP, two
ports (and two sockets) are required. HTTP is a common example of this: insecure HTTP
traffic happens on port 80 by default, whereas HTTPS (HTTP over SSL) communication
happens on port 443 by default.

So any TCP socket can be transformed into an SSL socket. In Ruby this is most often
done using the openssl library included in the standard library. Here's an example:

wwtcps | 119

./code/snippets/ssl_server.rb
require 'socket'
require 'openssl'

def main
Build the TCP server.
server = TCPServer.new(4481)

Build the SSL context.
ctx = OpenSSL::SSL::SSLContext.new
ctx.cert, ctx.key = create_self_signed_cert(

1024,
[['CN', 'localhost']],
"Generated by Ruby/OpenSSL"

)
ctx.verify_mode = OpenSSL::SSL::VERIFY_PEER

Build the SSL wrapper around the TCP server.
ssl_server = OpenSSL::SSL::SSLServer.new(server, ctx)

Accept connections on the SSL socket.
connection = ssl_server.accept

Treat it like any other connection.
connection.write("Bah now")
connection.close

end

This code is unabashedly taken straight from webrick/ssl.
It generates a self-signed SSL certificate suitable for use
with a Context object.
def create_self_signed_cert(bits, cn, comment)

rsa = OpenSSL::PKey::RSA.new(bits){|p, n|
case p

wwtcps | 120

when 0; $stderr.putc "." # BN_generate_prime
when 1; $stderr.putc "+" # BN_generate_prime
when 2; $stderr.putc "*" # searching good prime,

n = #of try,
but also data from BN_generate_prime

when 3; $stderr.putc "\n" # found good prime, n==0 - p, n==1 - q,
but also data from BN_generate_prime

else; $stderr.putc "*" # BN_generate_prime
end

}
cert = OpenSSL::X509::Certificate.new
cert.version = 2
cert.serial = 1
name = OpenSSL::X509::Name.new(cn)
cert.subject = name
cert.issuer = name
cert.not_before = Time.now
cert.not_after = Time.now + (365*24*60*60)
cert.public_key = rsa.public_key

ef = OpenSSL::X509::ExtensionFactory.new(nil,cert)
ef.issuer_certificate = cert
cert.extensions = [

ef.create_extension("basicConstraints","CA:FALSE"),
ef.create_extension("keyUsage", "keyEncipherment"),
ef.create_extension("subjectKeyIdentifier", "hash"),
ef.create_extension("extendedKeyUsage", "serverAuth"),
ef.create_extension("nsComment", comment),

]
aki = ef.create_extension("authorityKeyIdentifier",

"keyid:always,issuer:always")
cert.add_extension(aki)
cert.sign(rsa, OpenSSL::Digest::SHA1.new)

wwtcps | 121

return [cert, rsa]
end

main

That bit of code generates a self-signed SSL certificate and uses that to support the SSL
connection. The certificate is the cornerstone of security for SSL. Without it you're
basically just using a fancy insecure connection.

Likewise, setting verify_mode = OpenSSL::SSL::VERIFY_PEER is essential to the security of your
connection. Many Ruby libraries default that value to OpenSSL::SSL::VERIFY_NONE . This is a
more lenient setting that will allow non-verified SSL certificates, forgoing much of the
assumed security provided by the certificates. This issue has been discussed 2 at length
in the Ruby community.

So once you have that server running you can attempt to connect to it using a regular ol'
TCP connection with netcat:

$ echo hello | nc localhost 4481

Upon doing so your server will crash with an OpenSSL::SSL::SSLError . This is a good thing!

The server refused to accept a connection from an insecure client and, so, raised an
exception. Boot up the server again and we'll connect to it using an SSL-secured Ruby
client:

2. http://www.rubyinside.com/how-to-cure-nethttps-risky-default-https-behavior-4010.html

wwtcps | 122

http://www.rubyinside.com/how-to-cure-nethttps-risky-default-https-behavior-4010.html

./code/snippets/ssl_client.rb
require 'socket'
require 'openssl'

Create the TCP client socket.
socket = TCPSocket.new('0.0.0.0', 4481)

ssl_socket = OpenSSL::SSL::SSLSocket.new(socket)
ssl_socket.connect

ssl_socket.read

Now you should see both programs exit successfully. In this case there was successful
SSL communication between server and client.

In a typical production setting you wouldn't generate a self-signed certificate (that's
suitable only for development/testing). You'd usually buy a certificate from a trusted
source . The SSL source would provide you with the cert and key that you need for secure
communication and those would take the place of the self-signed certificate in our
example.

wwtcps | 123

Chapter 18

Urgent Data
A while back I stressed the point that TCP sockets provide an ordered stream of data. In
other words, you can imagine the TCP data stream as a queue. For example, one end of a
socket connection writes some data to the connection, this pushes it onto the queue. It
moves through the various stages (local buffers, network transit, remote buffers), and
then is popped off this 'queue' by the receiving socket.

This mental model holds true for typical TCP communication. TCP urgent data, more
often referred to as out-of-band data, allows you to push data all the way to the front of
the queue, where it can be received by the other end of the connection as soon as
possible, even bypassing data that is already en route.

There's a method on Socket that we haven't come across yet, Socket#send .

Socket#send is like a specialized version of Socket#write (inherited from IO). In fact, without
arguments, it behaves just like `write'.

These have the same effect
socket.write 'foo'
socket.send 'foo'

Whereas the write method is generalized to be used with any IO object, the send method
is specialized to work just with sockets. This specialization allows Socket#send to accept a
second argument: flags. We can specify a flag to send to denote some data as urgent.

wwtcps | 124

Sending Urgent DataSending Urgent Data
Let's have a look:

./code/snippets/sending_urgent_data.rb
require 'socket'

socket = TCPSocket.new 'localhost', 4481

Send some data using the standard method
socket.write 'first'
socket.write 'second'

Send some urgent data
socket.send '!', Socket::MSG_OOB

To send a byte of urgent data, we call send and pass the Socket::MSG_OOB constant as the
flag. OOB here refers to out-of-band.

This is the what it takes to send some urgent data, but this isn't enough to cause the
receiver to get the urgent data first. In other words, the sender and receiver need to
collaborate in order for this to work.

Receiving Urgent DataReceiving Urgent Data
Here's how the receiver might get the urgent data using Socket#recv .

wwtcps | 125

./code/snippets/receiving_urgent_data.rb
require 'socket'

Socket.tcp_server_loop(4481) do |connection|
receive urgent data first
urgent_data = connection.recv(1, Socket::MSG_OOB)

data = connection.readpartial(1024)
end

In order to receive urgent data, we had to use Socket#recv with the same flag we used to
send the urgent data. Just as Socket#send is a socket-specific way to write data, Socket#recv

is a socket-specific way to read data. It, too, can accept flags.

Notice that we were able to consume the urgent data before the 'regular' data, even
though the regular data was written first. This is what you can do with urgent data.
Notice also that we had to explicitly receive the urgent data. If we hadn't called recv ,
this server wouldn't have noticed the urgent data. In other words, if the receiver isn't
looking for urgent data, it won't receive any. Read on for ways of dealing with this.

Calling connection.recv(1, Socket::MSG_OOB) will fail with Errno::EINVAL if there's no
pending urgent data.

LimitsLimits
You may have noticed that I only sent a single byte of urgent data in the above example.
This was intentional. The TCP implementation has limited support for urgent data in that

wwtcps | 126

only a single byte of urgent data can be sent at one time. If you send multiple bytes of
urgent data, only the last byte will be considered urgent. Any earlier bytes will appear
as part of the 'regular' TCP data stream.

Urgent Data and IO.selectUrgent Data and IO.select
As with most things, we can use IO.select to monitor sockets for urgent data. However,
there is a serious caveat.

Remember how I said that the third argument to IO.select was an array of IO objects for
which you are interested in out-of-band data? Here's how it might be used:

./code/snippets/select_args.rb
for_reading = [<TCPSocket>, <TCPSocket>, <TCPSocket>]
for_writing = [<TCPSocket>, <TCPSocket>, <TCPSocket>]

IO.select(for_reading, for_writing, for_reading)

Notice that we're passing the array of sockets to monitor for reading as the third
argument? This means that if any of those sockets receives urgent data, they'll be
included in the third element of the returned Array from IO.select .

This is great, it means we can monitor sockets for urgent data without having to call
recv blindly. However, in my experience, IO.select will continue to say that there's urgent
data available even after it's all been consumed! This continues until some of the
'regular' TCP data stream has been consumed, most likely until the local recv buffer is
empty. This means that you'll need to add some extra error handling or state tracking
to make sure you don't get stuck in a tight loop trying to consume urgent data that isn't
coming.

wwtcps | 127

Given this caveat, and the single byte limitation, this is a rarely-used TCP feature.
There's only one usage of it in the Ruby standard library (in net/ftp), and it incorrectly
attempts to send more than one byte of urgent data 2.

The SO_OOBINLINE OptionThe SO_OOBINLINE Option
Another way to deal with urgent data is just to stick it in the regular data stream. There
is a socket option, called SO_OOBINLINE , that will allow out-of-band data to be received in-
band. In other words, the urgent data will be combined, in order, with the 'regular' data
stream. With this option enabled, the urgent data will no longer be treated as such. It
will be read from the queue in the same order it was sent relative to other writes.

Here's how to turn it on:

./code/snippets/oob_inline.rb
require 'socket'

Socket.tcp_server_loop(4481) do |connection|
receive urgent data inline with 'regular' data
connection.setsockopt :SOCKET, :OOBINLINE, true

note that the read stops when it
encounters urgent data
connection.readpartial(1024) #=> 'foo'
connection.readpartial(1024) #=> '!'

end

2. http://www.ruby-forum.com/topic/201519

wwtcps | 128

In this example, the foo data is received before the ! byte, so the urgent data is no
longer received first. I made a point of showing that the read family of methods is aware
of urgent data. Even though it could have fit the foo data and the ! data inside its 1024
byte limit, it stopped reading when it encountered urgent data, returned what it had,
then started over.

This option only has an effect on the receiving socket, not the sending socket.

wwtcps | 129

Chapter 19

Network Architecture
Patterns
Where the previous chapters covered the basics and the 'need-to-knows', this set of
chapters turns to best practices and real-world examples. I consider the book up until
this point to be like reference documentation: you can refer back to it and remind
yourself how to use certain features or solve certain problems, but only if you know
what you're looking for.

If you were tasked with building an FTP server in Ruby, just knowing the first half of
this book would certainly help, but it wouldn't lead you to creating great software.

Though you know the building blocks you haven't yet seen common ways to structure
networked applications. How should concurrency be handled? How should errors be
handled? What's the best way to handle slow clients? How can you make most efficient
use of resources?

These are the kinds of questions that this section of the book aims to answer. We'll
begin by looking at 6 network architectures patterns and apply these to an example
project.

wwtcps | 130

The MuseThe Muse
Rather than just use diagrams and talk in the abstract, I want to really have an example
project that we can implement and re-implement using different patterns. This should
really drive home the differences between the patterns.

For this we'll be writing a server that speaks a subset of FTP. Why a subset? Because I
want the focus of this section to be on the architecture pattern, not the protocol
implementation. Why FTP? Because then we can test it without having to write our own
clients. Lots of FTP clients already exist.

For the unfamiliar, FTP is the File Transfer Protocol. It defines a text-based protocol,
typically spoken over TCP, for transferring files between two computers.

As you'll see, it feels a bit like browsing a filesystem. FTP makes use of simultaneous
TCP sockets. One 'control' socket is used for sending FTP commands and their
arguments between server and client. Each time that a file transfer is to be made, a new
TCP socket is used. It's a nice hack that allows for FTP commands to continue to be
processed on the control socket while a transfer is in progress.

Here's the protocol implementation of our FTP server. It provides a CommandHandler class
that encapsulates the handling of individual commands on a per-connection basis. This
is important. Individual connections on the same server may have different working
directories, and this class honours that.

wwtcps | 131

./code/ftp/command_handler.rb
module FTP

class CommandHandler
CRLF = "\r\n"

attr_reader :connection
def initialize(connection)

@connection = connection
end

def pwd
@pwd || Dir.pwd

end

def handle(data)
cmd = data[0..3].strip.upcase
options = data[4..-1].strip

case cmd
when 'USER'

Accept any username anonymously
"230 Logged in anonymously"

when 'SYST'
what's your name?
"215 UNIX Working With FTP"

when 'CWD'
if File.directory?(options)

@pwd = options
"250 directory changed to #{pwd}"

else
"550 directory not found"

end

wwtcps | 132

when 'PWD'
"257 \"#{pwd}\" is the current directory"

when 'PORT'
parts = options.split(',')
ip_address = parts[0..3].join('.')
port = Integer(parts[4]) * 256 + Integer(parts[5])

@data_socket = TCPSocket.new(ip_address, port)
"200 Active connection established (#{port})"

when 'RETR'
file = File.open(File.join(pwd, options), 'r')
connection.respond "125 Data transfer starting #{file.size} bytes"

bytes = IO.copy_stream(file, @data_socket)
@data_socket.close

"226 Closing data connection, sent #{bytes} bytes"

when 'LIST'
connection.respond "125 Opening data connection for file list"

result = Dir.entries(pwd).join(CRLF)
@data_socket.write(result)
@data_socket.close

"226 Closing data connection, sent #{result.size} bytes"

when 'QUIT'
"221 Ciao"

wwtcps | 133

else
"502 Don't know how to respond to #{cmd}"

end
end

end
end

This protocol implementation doesn't say much about networking or concurrency;
that's the part we get to play with in the following chapters.

wwtcps | 134

Chapter 20

Serial
The first network architecture pattern we'll look at is a Serial model of processing
requests. We'll proceed from the perspective of our FTP server.

ExplanationExplanation
With a serial architecture all client connections are handled serially. Since there is no
concurrency, multiple clients are never served simultaneously.

The flow of this architecture is straightforward:

1. Client connects.

2. Client/server exchange requests and responses.

3. Client disconnects.

4. Back to step #1.

wwtcps | 135

ImplementationImplementation

wwtcps | 136

./code/ftp/arch/serial.rb
require 'socket'
require_relative '../command_handler'

module FTP
CRLF = "\r\n"

class Serial
def initialize(port = 21)

@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def gets
@client.gets(CRLF)

end

def respond(message)
@client.write(message)
@client.write(CRLF)

end

def run
loop do

@client = @control_socket.accept
respond "220 OHAI"

handler = CommandHandler.new(self)

loop do
request = gets

if request
respond handler.handle(request)

wwtcps | 137

else
@client.close
break

end
end

end
end

end
end

server = FTP::Serial.new(4481)
server.run

Notice that this class is only responsible for networking and concurrency; it hands off
the protocol handling to the CommandHandler methods. It's a pattern you'll keep seeing.
Let's take it from the top.

class Serial
def initialize(port = 21)

@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def gets
@client.gets(CRLF)

end

def respond(message)
@client.write(message)
@client.write(CRLF)

end

wwtcps | 138

These three methods are the boilerplate of this particular implementation. The initialize

method opens a socket that will, eventually, accept client connections.

The gets method delegates gets to the current client connection. Notice that it passes an
explicit delimiter in order to stay portable across platforms with different defaults
delimiters.

The respond method writes out a formatted FTP response. The message is a combination of
an Integer response code and a String message. The client knows the response is
complete when it receives the combination of the carriage return, \r , and line feed, \n ,
characters.

def run
loop do

@client = @control_socket.accept
respond "220 OHAI"

handler = CommandHandler.new(self)

This is the main run loop for this server. As you can see, all of the logic happens inside
a main outer loop.

The only call to accept inside this loop is the one you see at the top here. It accepts a
connection from the @control_socket initialized in initialize . The 220 response is a protocol
implementation detail. FTP requires us to say 'hi' after accepting a new client
connection.

The last bit here is the initialization of a CommandHandler for this connection. This class
encapsulates the current state (current working directory) of the server on a per-

wwtcps | 139

connection basis. We'll feed the incoming requests to the handler object and get back the
proper responses.

This bit of code is the concurrency blocker in this pattern. Because the server does not
continue to accept connections while it's processing this one, there can be no
concurrency. This difference will become more apparent as we look at how other
patterns handle this.

loop do
request = gets

if request
respond handler.handle(request)

else
@client.close
break

end
end

This rounds out the serial implementation of our FTP server.

It enters an inner loop where it gets requests from the client socket passing in the
explicit separator. It then passes those requests to the handler which crafts the proper
response for the client.

Given that this is a fully functioning FTP server (albeit, it only supports a subset of FTP),
we can actually run the server and hook it up with a standard FTP client to see it in
action:

wwtcps | 140

$ ruby code/ftp/arch/serial.rb

$ ftp -a -v 127.0.0.1 4481
cd /var/log
pwd
get kernel.log

ConsiderationsConsiderations
It's hard to nail down the pros and cons for each pattern because it depends entirely on
your needs. I'll do my best to explain where each pattern excels and what tradeoffs it
makes.

The greatest advantage that a serial architecture offers is simplicity. There's no locks,
no shared state, no way to confuse one connection with another. This also goes for
resource usage: one instance handling one connection won't consume as many
resources as many instances or many connections.

The obvious disadvantage is that there's no concurrency. Pending connections aren't
processed even when the current connection is idle. Similarly, if a connection is using a
slow link or pausing between sending requests the server remains blocked until that
connection is closed.

This serial implementation is really just a baseline for the more interesting patterns
that follow.

wwtcps | 141

Chapter 21

Process per connection
This is the first network architecture we'll look at that allows parallel processing of
requests.

ExplanationExplanation
This particular architecture requires very few changes from the serial architecture in
order to add concurrency. The code that accepts connections will remain the same, as
will the code that consumes data from the socket.

The relevant change is that after accepting a connection, the server will fork a child
process whose sole purpose will be the handling of that new connection. The child
process handles the connection, then exits.

wwtcps | 142

Forking Basics

Any time that you start up a program using $ ruby myapp.rb , for instance, a new
Ruby process is spawned that loads and executes your code.

If you do a fork as part of your program you can actually create a new process at
runtime. The effect of a fork is that you end up with two processes that are exact
copies. The newly created process is considered the child; the original
considered the parent. Once the fork is complete then you have two processes
that can go their separate ways and do whatever they need to do.

This is tremendously useful because it means we can, for instance, accept a
connection, fork a child process, and that child process automatically gets a copy
of the client connection. Hence there's no extra setup, sharing of data, or locking
required to start parallel processing.

Let's make the flow of events crystal clear:

1. A connection comes in to the server.

2. The main server process accepts the connection.

3. It forks a new child process which is an exact copy of the server process.

4. The child process continues to handle its connection in parallel while the server
process goes back to step #1.

wwtcps | 143

Thanks to kernel semantics these processes are running in parallel. While the new
child process is handling the connection, the original parent process can continue to
accept new connections and fork new child processes to handle them.

At any given time there will always be a single parent process waiting to accept
connections. There may also be multiple child processes handling individual
connections.

wwtcps | 144

ImplementationImplementation

wwtcps | 145

./code/ftp/arch/process_per_connection.rb
require 'socket'
require_relative '../command_handler'

module FTP
class ProcessPerConnection

CRLF = "\r\n"

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def gets
@client.gets(CRLF)

end

def respond(message)
@client.write(message)
@client.write(CRLF)

end

def run
loop do

@client = @control_socket.accept

pid = fork do
respond "220 OHAI"

handler = CommandHandler.new(self)

loop do
request = gets

wwtcps | 146

if request
respond handler.handle(request)

else
@client.close
break

end
end

end

Process.detach(pid)
end

end
end

end

server = FTP::ProcessPerConnection.new(4481)
server.run

As you can see the majority of the code remains the same. The main difference is that
the inner loop is wrapped in a call to fork .

@client = @control_socket.accept

pid = fork do
respond "220 OHAI"

handler = CommandHandler.new(self)

Immediately after accept ing a connection the server process calls fork with a block. The
new child process will evaluate that block and then exit.

wwtcps | 147

This means that each incoming connection gets handled by a single, independent
process. The parent process will not evaluate the code in the block; it just continues
along the execution path.

Process.detach(pid)

Notice the call to Process.detach at the end? After a process exits it isn't fully cleaned up
until its parent asks for its exit status. In this case we don't care what the child exit
status is, so we can detach from the process early on to ensure that its resources are
fully cleaned up when it exits 2.

ConsiderationsConsiderations
This pattern has several advantages. The first is simplicity. Notice that very little extra
code was required on top of the serial implementation in order to be able to service
multiple clients in parallel.

A second advantage is that this kind of parallelism requires very little cognitive
overhead. I mentioned earlier that fork effectively provides copies of everything a child
process might need. There are no edge cases to look out for, no locks or race conditions,
just simple separation.

An obvious disadvantage to this pattern is that there's no upper bound on the number
of child processes it's willing to fork . For a small number of clients this won't be an
issue, but if you're spawning dozens or hundreds of processes then your system will

2. If you want to learn more about process spawning and zombie processes then you should get my other book Working With
Unix Processes.

wwtcps | 148

http://workingwithunixprocesses.com
http://workingwithunixprocesses.com

quickly fall over. This concern can be solved using the Preforking pattern discussed a
few chapters from now.

Depending on your operating environment, the very fact that it uses fork might be an
issue. fork is only supported on Unix systems. This means it's not supported on Windows
or JRuby.

Another concern is the issue of using processes versus using threads. I'll save this
discussion for the next chapter when we actually get to see threads.

ExamplesExamples
• shotgun

• inetd

wwtcps | 149

https://github.com/rtomayko/shotgun
http://en.wikipedia.org/wiki/Inetd

Chapter 22

Thread per connection

ExplanationExplanation
This pattern is very similar to the Process Per Connection pattern from the last chapter.
The difference? Spawn a thread instead of spawning a process.

wwtcps | 150

Threads vs. Processes

Threads and processes both offer parallel execution, but in very different ways.
Neither is ever a silver bullet and your choice of which to use depends on your
use case.

SpawningSpawning. When it comes to spawning, threads are much cheaper to spawn.
Spawning a process creates a copy of everything the original process had.
Threads are per-process, so if you have multiple threads they'll all be in the same
process. Since threads share memory, rather than copying it, they can spawn
much faster.

SynchronizingSynchronizing. Since threads share memory you must take great care when
working with data structures that will be accessed by multiple threads. This
usually means mutexes, locks, and synchronizing access between threads.
Processes need none of this because each process has its own copy of everything.

ParallelismParallelism. Both offer parallel computation implemented by the kernel. One
important thing to note about parallel threads in MRI is that the interpreter uses
a global lock around the current execution context. Since threads are per-process
they'll all be running inside the same interpreter. Even when using multiple
threads MRI prevents them from achieving true parallelism. This isn't true in
alternate Ruby implementations like JRuby or Rubinius 2.0.

Processes don't have this issue because each time a copy is made, the new
process also gets its own copy of the Ruby interpreter, hence there's no global
lock. In MRI, only processes offer true concurrency.

wwtcps | 151

One more thing about parallelism and threads. Even though MRI uses a global
interpreter lock it's pretty smart with threads. I mentioned in the DNS chapter
that Ruby will allow other threads to execute while a given thread is blocking on
IO.

In the end threads are lighter-weight; processes are heavier. Both offer parallel
execution. Both have their use cases.

wwtcps | 152

ImplementationImplementation

wwtcps | 153

./code/ftp/arch/thread_per_connection.rb
require 'socket'
require 'thread'
require_relative '../command_handler'

module FTP
Connection = Struct.new(:client) do

CRLF = "\r\n"

def gets
client.gets(CRLF)

end

def respond(message)
client.write(message)
client.write(CRLF)

end

def close
client.close

end
end

class ThreadPerConnection
def initialize(port = 21)

@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def run
Thread.abort_on_exception = true

loop do
conn = Connection.new(@control_socket.accept)

wwtcps | 154

Thread.new do
conn.respond "220 OHAI"

handler = FTP::CommandHandler.new(conn)

loop do
request = conn.gets

if request
conn.respond handler.handle(request)

else
conn.close
break

end
end

end
end

end
end

end

server = FTP::ThreadPerConnection.new(4481)
server.run

This code is subtly different from the previous two examples. It has more-or-less the
same methods, but they're organized differently.

wwtcps | 155

Connection = Struct.new(:client) do
CRLF = "\r\n"

def gets
client.gets(CRLF)

end

def respond(message)
client.write(message)
client.write(CRLF)

end

def close
client.close

end
end

Here we have the same boilerplate methods as before, but now they're grouped into a
Connection class, rather than being defined on the server class directly.

def run
Thread.abort_on_exception = true

loop do
conn = Connection.new(@control_socket.accept)

Thread.new do
conn.respond "220 OHAI"

handler = FTP::CommandHandler.new(conn)

wwtcps | 156

There are two key differences here. The first is that this code spawns a thread where
the previous example spawned a process. The second difference is that the client socket
returned from accept is passed to Connection.new ; each thread gets its own Connection

instance.

This is very important when working with threads. If we had simply assigned the client
socket to an instance variable, as we did previously, it would be shared among all of the
active threads. Since the threads are spawned in a shared instance of the FTP server,
they share the internal state of the instance.

This is a stark difference to programming with processes, where each process gets its
own copy of everything in memory. This sharing of state is one reason why some
developers say that programming with threads is hard. There's a simple rule of thumb
when you're doing socket programming with threads: each thread gets its own
connection object. This will save you headaches.

ConsiderationsConsiderations
This pattern shares many of the same advantages as the previous one: very little code
changes were required, very little cognitive overhead added. Although using threads
can introduce issues with locking and synchronization, we don't have to worry about
any of that here because each connection is handled by a single, independent thread.

One advantage of this pattern over Process Per Connection is that threads are lighter on
resources, hence there can be more of them. This pattern should afford you more
concurrency to service clients than you can have using processes.

wwtcps | 157

But waitBut wait, remember that the MRI GIL comes into play here to prevent that from
becoming a reality. In the end, neither pattern is a silver bullet. Each should be
considered, tried, and tested.

This pattern shares a disadvantage with Process Per Connection: the number of threads
can grow and grow until the system is overwhelmed. If your server is handling an
increased number of connections, then your system could possibly be overwhelmed
trying to maintain and switch between all the active threads. This can be resolved by
limiting the number of active threads. We'll see this when we look at the Thread Pool
pattern.

ExamplesExamples
• WEBrick

• Mongrel

wwtcps | 158

http://www.ruby-doc.org/stdlib-1.9.3/libdoc/webrick/rdoc/WEBrick.html
http://rubygems.org/gems/mongrel

Chapter 23

Preforking

ExplanationExplanation
This pattern harks back to the Process Per Connection architecture we saw a few chapters
back.

This one also leans on processes as its means of parallelism, but rather than forking a
child process for each incoming connection, it forks a bunch of processes when the
server boots up, before any connections arrive.

Let's review the workflow:

1. Main server process creates a listening socket.

2. Main server process forks a horde of child processes.

3. Each child process accepts connections on the shared socket and handles them
independently.

4. Main server process keeps an eye on the child processes.

The important concept is that the main server process opens the listening socket, but
doesn't accept connections on it. It then forks a predefined number of child processes,
each of will have a copy of the listening socket. The child processes then each call accept

on the listening socket, taking the parent process out of the equation.

wwtcps | 159

The best part about this is that we don't have to worry about load balancing or
synchronizing connections across our child processes because the kernel handles that
for us. Given more than one process trying to accept a connection on different copies of
the same socket, the kernel balances the load and ensures that one, and only one, copy
of the socket will be able to accept any particular connection.

wwtcps | 160

ImplementationImplementation

wwtcps | 161

./code/ftp/arch/preforking.rb
require 'socket'
require_relative '../command_handler'

module FTP
class Preforking

CRLF = "\r\n"
CONCURRENCY = 4

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def gets
@client.gets(CRLF)

end

def respond(message)
@client.write(message)
@client.write(CRLF)

end

def run
child_pids = []

CONCURRENCY.times do
child_pids << spawn_child

end

trap(:INT) {
child_pids.each do |cpid|

begin
Process.kill(:INT, cpid)

wwtcps | 162

rescue Errno::ESRCH
end

end

exit
}

loop do
pid = Process.wait
$stderr.puts "Process #{pid} quit unexpectedly"

child_pids.delete(pid)
child_pids << spawn_child

end
end

def spawn_child
fork do

loop do
@client = @control_socket.accept
respond "220 OHAI"

handler = CommandHandler.new(self)

loop do
request = gets

if request
respond handler.handle(request)

else
@client.close
break

end

wwtcps | 163

end
end

end
end

end
end

server = FTP::Preforking.new(4481)
server.run

This implementation is notably different from the three we've looked at thus far. Let's
talk about in two chunks, starting at the top.

wwtcps | 164

def run
child_pids = []

CONCURRENCY.times do
child_pids << spawn_child

end

trap(:INT) {
child_pids.each do |cpid|

begin
Process.kill(:INT, cpid)

rescue Errno::ESRCH
end

end

exit
}

loop do
pid = Process.wait
$stderr.puts "Process #{pid} quit unexpectedly"

child_pids.delete(pid)
child_pids << spawn_child

end
end

This method begins by invoking the spawn_child method a number of times, based on the
number stored in CONCURRENCY . The spawn_child method (more on it below) will actually
fork a new process and return its unique process id (pid).

wwtcps | 165

After spawning the children, the parent process defines a signal handler for the INT

signal. This is the signal that your process receives when you type Ctrl-C , for instance.
This bit of code simply forwards an INT signal received by the parent to its child
processes. Remember that the child processes exist independently of the parent and are
happy to live on even if the parent process dies. As such, it's important for a parent
process to clean up their child processes before exiting.

After signal handling, the parent process enters a loop around Process.wait . This method
will block until a child process exits. It returns the pid of the exited child. Since there's
no reason for the child processes to exit, we assume it's an anomaly. We print a message
on STDERR and spawn a new child to take its place.

Some preforking servers, notably Unicorn 2, have the parent process take a more active
role in monitoring its children. For example, the parent may look to see if any of the
children are taking a long time to process a request. In that case the parent process will
forcefully kill the child process and spawn a new one in its place.

2. http://unicorn.bogomips.org

wwtcps | 166

http://unicorn.bogomips.org

def spawn_child
fork do

loop do
@client = @control_socket.accept
respond "220 OHAI"

handler = CommandHandler.new(self)

loop do
request = gets

if request
respond handler.handle(request)

else
@client.close
break

end
end

end
end

end

The core of this method should be familiar. This time it's wrapped in a fork and a loop .
So a new child process is forked before calling accept . The outermost loop ensures that as
each connection is handled and closed, a new connection is handled. In this way each
child process will be in its own accept loop.

ConsiderationsConsiderations
There are several things at play that make this a great pattern.

wwtcps | 167

Compared to the similar Process Per Connection architecture, Preforking doesn't have to
pay the cost of doing a fork during each connection. Forking a process isn't a cheap
operation, and in Process Per Connection, every single connection must begin with paying
that cost.

As hinted earlier, this pattern prevents too many processes from being spawned,
because they're all spawned beforehand.

One advantage that this pattern has over a similar threaded pattern is complete
separation. Since each process has its own copy of everything, including the Ruby
interpreter, a failure in one process will not affect any other processes. Since threads
share the same process and memory space, a failure in one thread may affect other
threads unpredictably.

A disadvantage of using Preforking is that forking more processes means that your
server will consume more memory. Processes don't come cheap. Given that each forked
process gets a copy of everything, you can expect your memory usage to increase by up
to 100% of the parent process size on each fork.

In this way a 100MB process will occupy 500MB after forking four children. And this
would allow only 4 concurrent connections.

I won't harp this point too much here, but this code is really simple. There are a few
concepts that need to be understood, but overall it's simple, with little to worry about in
the way of things going awry at runtime.

ExamplesExamples
• Unicorn

wwtcps | 168

http://unicorn.bogomips.org

Chapter 24

Thread Pool

OverviewOverview
This pattern is to Preforking what Thread Per Connection is to Process Per Connection.
Much like Preforking, this pattern will spawn a number of threads when the server
boots and defer connection handling to each independent thread.

The flow of this architecture is the same as the previous, but substitute 'thread' for
'process'.

wwtcps | 169

ImplementationImplementation

wwtcps | 170

./code/ftp/arch/thread_pool.rb
require 'socket'
require 'thread'
require_relative '../command_handler'

module FTP
Connection = Struct.new(:client) do

CRLF = "\r\n"

def gets
client.gets(CRLF)

end

def respond(message)
client.write(message)
client.write(CRLF)

end

def close
client.close

end
end

class ThreadPool
CONCURRENCY = 25

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def run
Thread.abort_on_exception = true
threads = ThreadGroup.new

wwtcps | 171

CONCURRENCY.times do
threads.add spawn_thread

end

sleep
end

def spawn_thread
Thread.new do

loop do
conn = Connection.new(@control_socket.accept)
conn.respond "220 OHAI"

handler = CommandHandler.new(conn)

loop do
request = conn.gets

if request
conn.respond handler.handle(request)

else
conn.close
break

end
end

end
end

end
end

end

wwtcps | 172

server = FTP::ThreadPool.new(4481)
server.run

Again, two main methods here. One spawns the threads, the other encapsulates the
spawning and thread behaviour. Since we're working with threads, we'll once again be
using the Connection class.

CONCURRENCY = 25

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def run
Thread.abort_on_exception = true
threads = ThreadGroup.new

CONCURRENCY.times do
threads.add spawn_thread

end

sleep
end

The run method creates a ThreadGroup to keep track of all the threads. ThreadGroup is a bit
like a thread-aware Array. You add threads to the ThreadGroup , but when a member
thread finishes execution it's silently dropped from the group.

wwtcps | 173

You can use ThreadGroup#list to get a list of all the threads currently in the group, all of
which will be active. We don't actually use this in this implementation but ThreadGroup

would be useful if we wanted to act on all active threads (to join them, for instance).

Much like in the last chapter, we simply call the spawn_thread method as many times as
CONCURRENCY calls for. Notice how the CONCURRENCY number is higher here than in
Preforking? Again, that's because threads are lighter weight and, therefore, we can have
more of them. Just keep in mind that the MRI GIL mitigates some of this gain.

The end of this method calls sleep to prevent it from exiting. The main thread remains
idle while the pool does the work. Theoretically it could be doing its own work
monitoring the pool, but here it just sleep s to prevent it from exiting.

wwtcps | 174

def spawn_thread
Thread.new do

loop do
conn = Connection.new(@control_socket.accept)
conn.respond "220 OHAI"

handler = CommandHandler.new(conn)

loop do
request = conn.gets

if request
conn.respond handler.handle(request)

else
conn.close
break

end
end

end
end

end

This method is pretty unexciting. It follows the same pattern as Preforking. Namely,
spawn a thread that loops around the connection handling code. Again, the kernel
ensures that a single connection can only be accept ed into a single thread.

ConsiderationsConsiderations
Much of the considerations of this pattern are shared with the previous.

wwtcps | 175

Besides the obvious thread vs. process tradeoff this pattern will not need to spawn
threads each time it handles a connection, does not have any crazy locks or race
conditions, yet still provides parallel processing.

ExamplesExamples
• Puma

wwtcps | 176

http://puma.io

Chapter 25

Evented (Reactor)
Up until now all of the patterns we've seen have really been a variation on the serial
pattern. Besides the serial pattern itself, the other patterns used the same structure but
wrapped threads or processes around it.

This pattern takes a whole different approach that won't look anything like the others.

OverviewOverview
The evented pattern (based on the Reactor pattern 2) seems to be all the rage these days.
It's at the core of libraries like EventMachine, Twisted, Node.js, Nginx, and others.

This pattern is single-threaded and single-process, yet it can achieve levels of
concurrency at least on par with the other patterns discussed.

It centers around a central connection multiplexer (hereby referred to as the Reactor
core). Each stage of the connection lifecycle is broken down into individual events that
can be interleaved and handled in any given order. The different stages of a connection
are simply the possible IO operations: accept, read, write, close.

The central multiplexer monitors all the active connections for events and dispatches
the relevant code upon being triggered by an event.

2. http://en.wikipedia.org/wiki/Reactor_pattern

wwtcps | 177

http://en.wikipedia.org/wiki/Reactor_pattern

Let's review the workflow:

1. The server monitors the listening socket for incoming connections.

2. Upon receiving a new connection it adds it to the list of sockets to monitor.

3. The server now monitors the active connection as well as the listening socket.

4. Upon being notified that the active connection is readable the server reads a
chunk of data from that connection and dispatches the relevant callback.

5. Upon being notified that the active connection is still readable the server reads
another chunk and dispatches the callback again.

6. The server receives another new connection; it adds that to the list of sockets to
monitor.

7. The server is notified that the first connection is ready for writing, so the
response is written out on that connection.

Keep in mind that all of this is happening in a single thread. Notice that the server was
able to accept a new connection while the first connection was still in the middle of its
read/write flow?

The server is simply splitting each operation into small chunks so that the various
events pertaining to multiple connections can be interleaved.

Time to dig into the code.

wwtcps | 178

ImplementationImplementation

wwtcps | 179

./code/ftp/arch/evented.rb
require 'socket'
require_relative '../command_handler'

module FTP
class Evented

CHUNK_SIZE = 1024 * 16

class Connection
CRLF = "\r\n"
attr_reader :client

def initialize(io)
@client = io
@request, @response = "", ""
@handler = CommandHandler.new(self)

respond "220 OHAI"
on_writable

end

def on_data(data)
@request << data

if @request.end_with?(CRLF)
Request is completed.
respond @handler.handle(@request)
@request = ""

end
end

def respond(message)
@response << message + CRLF

wwtcps | 180

Write what can be written immediately,
the rest will be retried next time the
socket is writable.
on_writable

end

def on_writable
bytes = client.write_nonblock(@response)
@response.slice!(0, bytes)

end

def monitor_for_reading?
true

end

def monitor_for_writing?
!(@response.empty?)

end
end

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def run
@handles = {}

loop do
to_read = @handles.values.select(&:monitor_for_reading?).map(&:client)
to_write = @handles.values.select(&:monitor_for_writing?).map(&:client)

readables, writables = IO.select(to_read + [@control_socket], to_write)

wwtcps | 181

readables.each do |socket|
if socket == @control_socket

io = @control_socket.accept
connection = Connection.new(io)
@handles[io.fileno] = connection

else
connection = @handles[socket.fileno]

begin
data = socket.read_nonblock(CHUNK_SIZE)
connection.on_data(data)

rescue Errno::EAGAIN
rescue EOFError

@handles.delete(socket.fileno)
end

end
end

writables.each do |socket|
connection = @handles[socket.fileno]
connection.on_writable

end
end

end
end

end

server = FTP::Evented.new(4481)
server.run

wwtcps | 182

You can see already that this implementation follows a different cadence than the
others that we've looked at thus far. Let's start breaking it down by section.

class Connection

This bit of code defines a Connection class for our Evented server.

We saw a Connection class for the threaded examples earlier to keep state separated
between threads. This example doesn't use threads, so why does it need a Connection

class?

All of the process-based patterns used processes to separate connections from each
other. No matter which way they were using processes, they always made sure that
each connection was handled by a single, independent process; each connection was
represented by a process.

The Evented pattern is single-threaded, but multiple client connections will be handled
concurrently, so each client connection needs to represented with its own object so they
don't trample on each others state.

wwtcps | 183

class Connection
CRLF = "\r\n"
attr_reader :client

def initialize(io)
@client = io
@request, @response = "", ""
@handler = CommandHandler.new(self)

respond "220 OHAI"
on_writable

Starting at the top of the Connection class, we see some familiarity.

The connection stores the actual underlying IO object in its @client instance variable and
makes that accessible to the outside world with an attr_accessor .

When an individual connection is initialized it gets its own CommandHandler instance, just
as before. After that it writes out the customary 'hello' response that FTP requires.
However, rather than writing it out to the client connection directly, it just assigns the
response body to the @response variable. As we'll see in the next section this triggers the
Reactor to take over and send this data out to the client.

wwtcps | 184

def on_data(data)
@request << data

if @request.end_with?(CRLF)
Request is completed.
respond @handler.handle(@request)
@request = ""

end
end

def respond(message)
@response << message + CRLF

Write what can be written immediately,
the rest will be retried next time the
socket is writable.
on_writable

end

def on_writable
bytes = client.write_nonblock(@response)
@response.slice!(0, bytes)

This part of Connection defines the lifecycle methods that the Reactor core interacts with.

For example, when the Reactor reads data from the client connection it triggers the
on_data with that data. Inside that method it checks to see if it's received a complete
request. If it has then it asks the @handler to build the response and, once again, assigns
that to @response .

wwtcps | 185

The on_writable method is called when the client connection is ready to be written to. This
is where the @response variable is dealt with. It writes what it can from the @response out
to the client connection. Based on how many bytes it was able to write, it slices the
@response to remove the bit that was successfully written.

As such, any subsequent writes will only write the part of the @response that wasn't able
to be written this time around. If the whole thing was able to be written, the @response

will be sliced to an empty string, and nothing more will be written.

The last two methods, monitor_for_reading? and monitor_for_writing? , are queried by the
Reactor to see if it should monitor the state of this particular connection for reading,
writing, or both. In this case we're always willing to read new data if it's available, but
we only want to monitor for the ability to write if there's a @response to be written. Given
an empty @response , the Reactor won't notify us if the client connection is writable.

def monitor_for_writing?
!(@response.empty?)

end
end

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

This is the main work of the Reactor core.

The @handles Hash looks something {6 => #<FTP::Evented::Connection:xyz123>} where the keys are
file descriptor numbers and the values are Connection objects.

wwtcps | 186

The first lines inside the main loop ask each of the active connections if they want to be
monitored for reading or writing, using the lifecycle methods we saw earlier. It grabs a
reference to the underlying IO object for each of the eligible connections.

The Reactor then passes these IO instances to IO.select with no timeout. This IO.select call
will block until one of the monitored sockets gets an event that requires attention.

Note that the Reactor also sneaks the @control_socket into the connections to monitor for
reading so it can detect new incoming client connections.

wwtcps | 187

def run
@handles = {}

loop do
to_read = @handles.values.select(&:monitor_for_reading?).map(&:client)
to_write = @handles.values.select(&:monitor_for_writing?).map(&:client)

readables, writables = IO.select(to_read + [@control_socket], to_write)

readables.each do |socket|
if socket == @control_socket

io = @control_socket.accept
connection = Connection.new(io)
@handles[io.fileno] = connection

else
connection = @handles[socket.fileno]

begin
data = socket.read_nonblock(CHUNK_SIZE)
connection.on_data(data)

rescue Errno::EAGAIN
rescue EOFError

This is the part of the Reactor that triggers appropriate methods based on events it
receives from IO.select .

First, it handles the sockets deemed 'readable'. If the @control_socket was readable this
means that there's a new client connection. So the Reactor accept s, builds a new
Connection and slots it into the @handles Hash so it can be monitored the next time around
the loop.

wwtcps | 188

Next, it handles the case where a socket deemed 'readable' was a regular client
connection. In this case it attempts to read the data and trigger the on_data method of
the appropriate Connection . In the case that the read would block (Errno::EAGAIN), it doesn't
do anything special, just lets the event fall through. In the case that the client
disconnected (EOFError), it makes sure to remove the entry from the @handles Hash so the
appropriate objects can be garbage collected and will no longer be monitored.

The last bit handles sockets deemed 'writable' simply by triggering the on_writable

method of the appropriate Connection .

ConsiderationsConsiderations
This pattern is notably different than the others and, as such, produces notably
different advantages and disadvantages.

First of all, this pattern has a reputation of being able to handle extremely high levels of
concurrency, numbering in the thousands or tens of thousands, of concurrent
connections. This is something that the other patterns simply can't approach because
they're limited by processes/threads.

If your server attempts to spawn 5000 threads to handle 5000 connections then things
will likely grind to a halt. This pattern wins, hands down, in terms of handling
concurrent connections.

The main disadvantage of this pattern is the programming model that it forces upon
you. On the one hand the model is simpler because there are no processes/threads to
deal with. This means there are no issues of shared memory, synchronization, runaway
processes, etc. to deal with. However, given that all this concurrency is happening

wwtcps | 189

inside a single thread, there's one very important rule to follow: never block the
Reactor.

To illustrate this, let's look closely at our implementation. Look inside the
CommandHandler class. Notice that when it handles the FTP file transfer command (RETR)
it actually opens a socket, streams the data, then closes the socket. The important part
is that this socket is being used outside the main Reactor loop, the Reactor knows
nothing about it.

Imagine that our client requesting a file transfer were on a slow connection. What
effect would this have on the Reactor?

Given that everything runs in same thread, this single slow client connection would
block the whole Reactor! When the Reactor triggers a method on a Connection , the whole
Reactor is blocked until that method returns. Since the on_data method delegates to the
CommandHandler , the whole Reactor is blocked while it streams the file transfer to the
client. In the meantime, no other data is being read, no new connections are being
accepted, etc.

It's very important that anything that your application code wants to do, be done very
quickly. So how should we handle a slow connection with a Reactor? Use the Reactor
itself!

If you're using this pattern you need to make sure that any blocking IO is handled by
the Reactor itself. In our example this would mean the socket used by the CommandHandler

would need to be encapsulated inside its own subclass of Connection that defined its own
on_data and on_writable methods.

When the Reactor is able to write some data to that slow connection, it would then
trigger the appropriate on_writable method, which would write as much as it could to the

wwtcps | 190

client without blocking. In this way the Reactor can continue processing other
connections while waiting for this slow remote connection, yet still handle that
connection when it's ready.

In short, this pattern offers some obvious advantages and really simplifies some aspects
of socket programming. On the other hand, it requires you to rethink all of the IO that
your app does. It's easy to cancel all of the offered benefits with a bit of slow code or
some third-party library that does blocking IO.

ExamplesExamples
• EventMachine

• Celluloid::IO

• Twisted

wwtcps | 191

http://rubyeventmachine.com/
http://celluloid.io/
http://twistedmatrix.com/trac/

Chapter 26

Hybrids
This is the last part of the network patterns section of the book. It doesn't cover a
specific pattern itself, but rather the concept of making a hybrid pattern that uses one
or more of the patterns described in this section.

Although any of these architectures can be applied to any kind of service (we saw FTP
in the previous chapters), there's been a lot of attention given to HTTP servers in
modern times. This is unsurprising given the prevalence of the web. The Ruby
community is at the forefront of this web movement and has its fair share of different
HTTP servers to choose from. Hence, the real-world examples we'll look at in this
chapter are all HTTP servers.

Let's dive in to some examples.

nginxnginx
The nginx 2 project provides an extremely high-performance network server written in
C. Indeed, its web site claims it can serve 1 million concurrent requests on a single server.
nginx is often used in the Ruby world as an HTTP proxy in front of web application
servers, but it can speak HTTP, SMTP, and others.

So how does nginx achieve this kind of concurrency?

2. http://nginx.org

wwtcps | 192

http://nginx.org

At its core 3, nginx uses the Preforking pattern. However, inside each forked process is
the Evented pattern. This makes a lot of sense as a high-performance choice for a few
reasons.

First, all of the spawning costs are paid at boot time when nginx forks child processes.
This ensures that nginx can take maximum advantage of multiple cores and server
resources. Second, the Evented pattern is notable in that it doesn't spawn anything and
doesn't use threads. One issue when using threads is the overhead required for the
kernel to manage and switch context between all of the active threads.

nginx is packed with tons of other features that make it blazing fast, including tight
memory management that can only be accomplished in a language like C, but at its core
it uses a hybrid of the patterns described in the last few chapters.

PumaPuma
The puma rubygem provides "a Ruby web server built for concurrency" 4. Puma is
designed as the go-to HTTP server for Ruby implementations without a GIL (Rubinius or
JRuby) because it leans heavily on threads. The Puma README 5 provides a good
overview of where it's applicable and reminds us about the effect of the GIL on
threading.

So how does Puma achieve its concurrency?

At a high level Puma uses a Thread Pool to provide concurrency. The main thread always
accept s new connections and then queues up the connection to the thread pool for

3. http://www.aosabook.org/en/nginx.html
4. http://puma.io
5. https://github.com/puma/puma#description

wwtcps | 193

http://www.aosabook.org/en/nginx.html
http://puma.io
https://github.com/puma/puma#description

handling. This is the whole story for HTTP connections that don't use keep-alive 6. But
Puma does support HTTP keep-alive. When a connection is handled and its first request
asks for the connection to be kept alive, Puma respects this and doesn't close it.

But now Puma can no longer just accept on that connection; it needs to monitor it for
new requests and process those as well. It does this with an Evented reactor. When a
new request arrives for a previously kept alive connection, that request is again queued
up to the Thread Pool for handling.

So Puma's request handling is always done by a pool of threads. This is supported by a
reactor that monitors any persistent connections.

Again, Puma is full of other optimizations, but at its core it's built on a hybrid of the
patterns from the last few chapters.

EventMachineEventMachine
EventMachine is well known in the Ruby world as an event-driven I/O library. It uses
the Reactor pattern to provide high stability and scalability. Its internal are written in C
but provide a Ruby interface as a C extension.

So how does EventMachine achieve its concurrency?

At its core EventMachine is an implementation of an Evented pattern. It's a single-
threaded event loop that can handle network events on many concurrent connections.
But EventMachine also provides a Thread Pool for deferring any long-running or
blocking operations that would otherwise slow down the Reactor.

6. http://en.wikipedia.org/wiki/HTTP_persistent_connection

wwtcps | 194

http://en.wikipedia.org/wiki/HTTP_persistent_connection

EventMachine supports a ton of features, including the ability to monitor spawned
processes, network protocol implementations and more. This example of using multiple
architectures is just one way that it improves concurrency.

wwtcps | 195

Chapter 27

Closing Thoughts
You now know the basics, and I daresay more, about socket programming. You can
apply this stuff to Ruby, and to anywhere else you may find yourself programming. This
is knowledge that will stick with you and remain useful.

Thanks for taking the time to read this book. I hope it gives you a deeper understanding
of the work you do and the technologies you work with. My email address is
jesse@jstorimer.com and I'm happy to chat about the book or any related programming
topics.

wwtcps | 196

	Releases
	Introduction
	My Story
	Who is This Book For?
	What to Expect
	The Berkeley Sockets API
	What's Not Covered?
	netcat
	Acknowledgements

	Your First Socket
	Ruby's Socket Library
	Creating Your First Socket
	Understanding Endpoints
	Loopbacks
	IPv6
	Ports
	Creating Your Second Socket
	Docs
	System Calls From This Chapter

	Establishing Connections
	Server Lifecycle
	Servers Bind
	What port should I bind to?
	What address should I bind to?

	Servers Listen
	The Listen Queue
	How big should the listen queue be?

	Servers Accept
	Accept is blocking
	Accept returns an Array
	Connection Class
	File Descriptors
	Connection Addresses
	The Accept Loop

	Servers Close
	Closing on Exit
	Different Kinds of Closing

	Ruby Wrappers
	Server Construction
	Connection Handling
	Wrapping it all into one

	System Calls From This Chapter

	Client Lifecycle
	Clients Bind
	Clients Connect
	Connect Gone Awry

	Ruby Wrappers
	Client Construction

	System Calls From This Chapter

	Exchanging Data
	Streams

	Sockets Can Read
	Simple Reads
	It's Never That Simple
	Read Length
	Blocking Nature
	The EOF Event
	Partial Reads
	System Calls From This Chapter

	Sockets Can Write
	System Calls From This Chapter

	Buffering
	Write Buffers
	How Much to Write?
	Read Buffers
	How Much to Read?

	Our First Client/Server
	The Server
	The Client
	Put It All Together
	Thoughts

	Socket Options
	SO_TYPE
	SO_REUSE_ADDR
	System Calls From This chapter

	Non-blocking IO
	Non-blocking Reads
	Non-blocking Writes
	Non-blocking Accept
	Non-blocking Connect

	Multiplexing Connections
	select(2)
	Events Other Than Read/Write
	EOF
	Accept
	Connect

	High Performance Multiplexing

	Nagle's algorithm
	Framing Messages
	Using newlines
	Using A Content Length

	Timeouts
	Unusable Options
	IO.select
	Accept Timeout
	Connect Timeout

	DNS Lookups
	MRI and the GIL
	resolv

	SSL Sockets
	Urgent Data
	Sending Urgent Data
	Receiving Urgent Data
	Limits
	Urgent Data and IO.select
	The SO_OOBINLINE Option

	Network Architecture Patterns
	The Muse

	Serial
	Explanation
	Implementation
	Considerations

	Process per connection
	Explanation
	Implementation
	Considerations
	Examples

	Thread per connection
	Explanation
	Implementation
	Considerations
	Examples

	Preforking
	Explanation
	Implementation
	Considerations
	Examples

	Thread Pool
	Overview
	Implementation
	Considerations
	Examples

	Evented (Reactor)
	Overview
	Implementation
	Considerations
	Examples

	Hybrids
	nginx
	Puma
	EventMachine

	Closing Thoughts

