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Chapter 1

Introduction
When I was growing up I was sitting in front of a computer every chance I got. Not
because I was programming, but because I was fascinated by what was possible with
this amazing machine. I grew up as a computer user using ICQ, Winamp, and Napster.

As I got older I spent more time playing video games on the computer. At first I was
into first-person shooters and eventually spent most of my time playing real-time
strategy games. And then I discovered that you can play these games online!
Throughout my youth I was a 'computer guy': I knew how to use computers, but I
had no idea how they worked under the hood.

The reason I'm giving you my background is because I want you to know that I was not
a child prodigy. I did not teach myself how to program Basic at age 7. When I took my
first computer programming class I was not teaching the teacher and correcting his
mistakes.

It wasn't until my second year of a University degree that I really came to love
programming as an activity. Some may say that I'm a late bloomer, but I have a feeling
that I'm closer to the norm than you may think.

Although I came to love programming for the sake of programming itself I still didn't
have a good grasp of how the computer was working under the hood. If you had told
me back then that all of my code ran inside of a process I would have looked at you
sideways.
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Fortunately for me I was given a great work opportunity at a local web startup. This
gave me a chance to do some programming on a real production system. This changed
everything for me. This gave me a reason to learn how things were working under the
hood.

As I worked on this high-traffic production system I was presented with increasingly
complex problems. As our traffic and resource demands increased we had to begin
looking at our full stack to debug and fix outstanding issues. By just focusing on
the application code we couldn't get the full picture of how the app was functioning.

We had many layers in front of the application: a firewall, load balancer, reverse proxy,
and http cache. We had layers that worked alongside the application: job queue,
database server, and stats collector. Every application will have a different set of
components that comprise it, and this book won't teach you everything there is to
know about all of it.

This book will teach you all you need to know about Unix processes, and that is
guaranteed to improve your understanding of any component at work in your
application.

Through debugging issues I was forced to dig deep into Ruby projects that made use of
Unix programming concepts. Projects like Resque and Unicorn. These two projects
were my introduction to Unix programming in Ruby.

After getting a deeper understanding of how they were working I was able to
diagnose issues faster and with greater understanding, as well as debug pesky
problems that didn't make sense when looking at the application code by itself.

I even started coming up with new, faster, more efficient solutions to the problems I
was solving that used the techniques I was learning from these projects. Alright,
enough about me. Let's go down the rabbit hole.
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Chapter 2

Primer
This section will provide background on some key concepts used in the book. It's
definitely recommended that you read this before moving on to the meatier chapters.

Why Care?
The Unix programming model has existed, in some form, since 1970. It was then that
Unix was famously invented at Bell Labs, along with the C programming language or
framework. In the decades that have elapsed since then Unix has stood the test of time
as the operating system of choice for reliability, security, and stability.

Unix programming concepts and techniques are not a fad, they're not the latest
popular programming language. These techniques transcend programming languages.
Whether you're programming in C, C++, Ruby, Python, JavaScript, Haskell, or [insert
your favourite language here] these techniques WILL be useful.

This stuff has existed, largely unchanged, for decades. Smart programmers have been
using Unix programming to solve tough problems with a multitude of programming
languages for the last 40 years, and they will continue to do so for the next 40 years.
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Harness the Power!
I'll warn you now, the concepts and techniques described in this book can bring you
great power. With this power you can create new software, understand complex
software that is already out there, even use this knowledge to advance your career to
the next level.

Just remember, with great power comes great responsibility. Read on and I'll tell you
everything you need to know to gain the power and avoid the pitfalls.

Overview
This book is not meant to be read as a reference manual. It's more of a walkthrough.
To get the most out of it you should read it sequentially, since each chapter builds on
the last. Once you're finished you can use the chapter headings to find information if
you need a refresher.

This book contains many code examples. I highly recommend that you follow along
with them by actually running them yourself in a Ruby interpreter. Playing with the
code yourself and making tweaks will help the concepts sink in that much more.

Once you've read through the book and played with the examples I'm sure you'll be
wanting to get your hands on a real world project that's a little more in depth. At that
point have a look at the included Spyglass project.

Spyglass is a web server that was created specifically for inclusion with this book. It's
designed to teach Unix programming concepts. It takes the concepts you learn here
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and shows how a real-world project would put them to use. Have a look at the last
chapter in this book for a deeper introduction.

System Calls
To understand system calls first requires a quick explanation of the components of a
Unix system, specifically userland vs. the kernel.

The kernel of your Unix system sits atop the hardware of your computer. It's a
middleman for any interactions that need to happen with the hardware. This includes
things like writing/reading from the filesystem, sending data over the network,
allocating memory, or playing audio over the speakers. Given its power, programs are
not allowed direct access to the kernel. Any communication is done via system calls.

The system call interface connects the kernel to userland. It defines the interactions
that are allowed between your program and the computer hardware.

Userland is where all of your programs run. You can do a lot in your userland programs
without ever making use of a system call: do mathematics, string operations, control
flow with logical statements. But I'd go as far as saying that if you want your programs
to do anything interesting then you'll need to involve the kernel via system calls.

If you were a C programmer this stuff would probably be second nature to you. System
calls are at the heart of C programming.

But I'm going to expect that you, like me, don't have any C programming experience.
You learned to program in a high level language. When you learned to write data to
the filesystem you weren't told which system calls make that happen.
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The takeaway here is that system calls allow your user-space programs to interact
indirectly with the hardware of your computer, via the kernel. We'll be looking at
common system calls as we go through the chapters.

Nomenclature, wtf(2)
One of the roadblocks to learning about Unix programming is where to find the
proper documentation. Want to hear the kicker? It's all available via Unix manual
pages (manpages), and if you're using a Unix based computer right now it's already on
your computer!

If you've never used manpages before you can start by invoking the command man man
from a terminal.

Perfect, right? Well, kind of. The manpages for the system call api are a great resource
in two situations:

1. you're a C programmer who wants to know how to invoke a given system call,
or

2. you're trying to figure out the purpose of a given system call

I'm going to assume we're not C programmers here, so #1 isn't so useful, but #2 is very
useful.

You'll see references throughout this text to things like this: select(2). This bit of text is
telling you where you can find the manpage for a given system call. You may or may
not know this, but there are many sections to the Unix manpages.
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Here's a look at the most commonly used sections of the manpages for FreeBSD and
Linux systems:

• Section 1: General Commands

• Section 2: System Calls

• Section 3: C Library Functions

• Section 4: Special Files

So Section 1 is for general commands (a.k.a. shell commands). If I wanted to refer you
to the manual page for the find command I would write it like this: find(1). This tells
you that there is a manual page for find in section 1 of the manpages.

If I wanted to refer to the manual page for the getpid system call I would write it like
this: getpid(2). This tells you that there is a manual page for getpid in section 2 of the
manpages.

Why do manpages need multiple sections? Because a command may be
available in more than one section, ie. available as both a shell command and a
system call.

Take stat(1) and stat(2) as an example.

In order to access other sections of the manpages you can specify it like this on the
command line:
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$ man 2 getpid
$ man 3 malloc
$ man find # same as man 1 find

This nomenclature was not invented for this book, it's a convention that's used
everywhere 1 when referring to the manpages. So it's a good idea to learn it now and
get comfortable with seeing it.

Processes: The Atoms of Unix
Processes are the building blocks of a Unix system. Why? Because any code that is
executed happens inside a process.

For example, when you launch ruby from the command line a new process is created
for your code. When your code is finished that process exits.

$ ruby -e "p Time.now"

The same is true for all code running on your system. You know that MySQL server
that's always running? That's running in its own process. The e-reader software you're
using right now? That's running in its own process. The email client that's desperately
trying to tell you you have new messages? You should ignore it by the way and keep
reading! It also runs in its own process.

1. http://en.wikipedia.org/wiki/Man_page#Usage
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Things start to get interesting when you realize that one process can spawn and
manage many others. We'll be taking a look at that over the course of this book.
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Chapter 3

Processes Have IDs
Every process running on your system has a unique process identifier, hereby referred
to as 'pid'.

The pid doesn't say anything about the process itself, it's simply a sequential numeric
label. This is how the kernel sees your process: as a number.

Here's how we can inspect the current pid in a ruby program. Fire up irb and try this:

# This line will print the pid of the current ruby process. This might be an
# irb process, a rake process, a rails server, or just a plain ruby script.
puts Process.pid

A pid is a simple, generic representation of a process. Since it's not tied to any aspect
of the content of the process it can be understood from any programming language
and with simple tools. We'll see below how we can use the pid to trace the process
details using different utilities.

Cross Referencing
To get a full picture, we can use ps(1) to cross-reference our pid with what the kernel is
seeing. Leaving your irb session open run the following command at a terminal:
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$ ps -p <pid-of-irb-process>

That command should show a process called 'irb' with a pid matching what was
printed in the irb session.

In the Real World
Just knowing the pid isn't all that useful in itself. So where is it used?

A common place you'll find pids in the real world is in log files. When you have
multiple processes logging to one file it's imperative that you're able to tell which log
line comes from which process. Including the pid in each line solves that problem.

Including the pid also allows you to cross reference information with the OS, through
the use of commands like top(1) or lsof(8). Here's some sample output from the
Spyglass server booting up. The first square brackets of each line denote the pid where
the log line is coming from.

[58550] [Spyglass::Server] Listening on port 4545
[58550] [Spyglass::Lookout] Received incoming connection
[58557] [Spyglass::Master] Loaded the app
[58557] [Spyglass::Master] Spawned 4 workers. Babysitting now...
[58558] [Spyglass::Worker] Received connection
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System Calls
Ruby's Process.pid maps to getpid(2).

There is also a global variable that holds the value of the current pid. You can
access it with $$ .

Ruby inherits this behaviour from other languages before it (both Perl and bash
support $$ ), however I avoid it when possible. Typing out Process.pid in full is
much more expressive of your intent than the dollar-dollar variable, and less likely
to confuse those who haven't seen the dollar-dollar before.
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Chapter 4

Processes Have Parents
Every process running on your system has a parent process. Each process knows its
parent process identifier (hereby referred to as 'ppid').

In the majority of cases the parent process for a given process is the process that
invoked it. For example, you're an OSX user who starts up Terminal.app and lands in a
bash prompt. Since everything is a process that action started a new Terminal.app
process, which in turn started a bash process.

The parent of that new bash process will be the Terminal.app process. If you then
invoke ls(1) from the bash prompt, the parent of that ls process will be the bash
process. You get the picture.

Since the kernel deals only in pids there is a way to get the pid of the current parent
process. Here's how it's done in Ruby:

# Notice that this is only one character different from getting the
# pid of the current process.
puts Process.ppid

Cross Referencing
Leaving your irb session open run the following command at a terminal:
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$ ps -p <ppid-of-irb-process>

That command should show a process called 'bash' (or 'zsh' or whatever) with a pid
that matches the one that was printed in your irb session.

In the Real World
There aren't a ton of uses for the ppid in the real world. It can be important when
detecting daemon processes, something covered in a later chapter.

System Calls
Ruby's Process.ppid maps to getppid(2).
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Chapter 5

Processes Have File
Descriptors
In much the same way as pids represent running processes, file descriptors represent
open files.

Everything is a File
A part of the Unix philosophy: in the land of Unix 'everything is a file'. This means that
devices are treated as files, sockets and pipes are treated as files, and files are treated as
files.

Since all of these things are treated as files I'm going to use the word 'resource'
when I'm talking about files in a general sense (including devices, pipes, sockets,
etc.) and I'll use the word 'file' when I mean the classical definition (a file on the
file system).

Descriptors Represent Resources
Any time that you open a resource in a running process it is assigned a file descriptor
number. File descriptors are NOT shared between unrelated processes, they live and
die with the process they are bound to, just as any open resources for a process are
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closed when it exits. There are special semantics for file descriptor sharing when you
fork a process, more on that later.

In Ruby, open resources are represented by the IO class. Any IO object can have an
associated file descriptor number. Use IO#fileno to get access to it.

passwd = File.open('/etc/passwd')
puts passwd.fileno

outputs:

3

Any resource that your process opens gets a unique number identifying it. This is how
the kernel keeps track of any resources that your process is using.

What happens when we have multiple resources open?
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passwd = File.open('/etc/passwd')
puts passwd.fileno

hosts = File.open('/etc/hosts')
puts hosts.fileno

# Close the open passwd file. The frees up its file descriptor
# number to be used by the next opened resource.
passwd.close

null = File.open('/dev/null')
puts null.fileno

outputs:

3
4
3

There are two key takeaways from this example.

1. File descriptor numbers are assigned the lowest unused value. The first file we
opened, passwd , got file descriptor #3, the next open file got #4 because #3 was
already in use.

2. Once a resource is closed its file descriptor number becomes available again.
Once we closed the passwd file its file descriptor number became available
again. So when we opened the file at dev/null it was assigned the lowest
unused value, which was then #3.
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It's important to note that file descriptors keep track of open resources only. Closed
resources are not given a file descriptor number.

Stepping back to the kernel's viewpoint again this makes a lot of sense. Once a
resource is closed it no longer needs to interact with the hardware layer so the kernel
can stop keeping track of it.

Given the above, file descriptors are sometimes called 'open file descriptors'. This is a
bit of misnomer since there is no such thing as a 'closed file descriptor'. In fact, trying
to read the file descriptor number from a closed resource will raise an exception:

passwd = File.open('/etc/passwd')
puts passwd.fileno
passwd.close
puts passwd.fileno

outputs:

3
-e:4:in `fileno': closed stream (IOError)

You may have noticed that when we open a file and ask for its file descriptor number
the lowest value we get is 3. What happened to 0, 1, and 2?
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Standard Streams
Every Unix process comes with three open resources. These are your standard input
(STDIN), standard output (STDOUT), and standard error (STDERR) resources.

These standard resources exist for a very important reason that we take for granted
today. STDIN provides a generic way to read input from keyboard devices or pipes,
STDOUT and STDERR provide generic ways to write output to monitors, files,
printers, etc. This was one of the innovations of Unix.

Before STDIN existed your program had to include a keyboard driver for all the
keyboards it wanted to support! And if it wanted to print something to the screen it
had to know how to manipulate the pixels required to do so. So let's all be thankful for
standard streams.

puts STDIN.fileno
puts STDOUT.fileno
puts STDERR.fileno

outputs:

0
1
2

That's where those first 3 file descriptor numbers went to.
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In the Real World
File descriptors are at the core of network programming using sockets, pipes, etc. and
are also at the core of any file system operations.

Hence, they are used by every running process and are at the core of most of the
interesting stuff you can do with a computer. You'll see many more examples of how to
use them in the following chapters or in the attached Spyglass project.

System Calls
Many methods on Ruby's IO class map to system calls of the same name. These
include open(2), close(2), read(2), write(2), pipe(2), fsync(2), stat(2), among others.
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Chapter 6

Processes Have Resource
Limits
In the last chapter we looked at the fact that open resources are represented by file
descriptors. You may have noticed that when resources aren't being closed the file
descriptor numbers continue to increase. It begs the question: how many file
descriptors can one process have?

The answer depends on your system configuration, but the important point is there
are some resource limits imposed on a process by the kernel.

Finding the Limits
We'll continue on the subject of file descriptors. Using Ruby we can ask directly for the
maximum number of allowed file descriptors:

p Process.getrlimit(:NOFILE)

On my machine this snippet outputs:

[2560, 9223372036854775807]
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We used a method called Process.getrlimit and asked for the maximum number of
open files using the symbol :NOFILE . It returned a two-element Array.

The first element in the Array is the soft limit for the number of file descriptors, the
second element in the Array is the hard limit for the number of file descriptors.

Soft Limits vs. Hard Limits
What's the difference? Glad you asked. The soft limit isn't really a limit. Meaning that if
you exceed the soft limit (in this case by opening more than 2560 resources at once) an
exception will be raised, but you can always change that limit if you want to.

Note that the hard limit on my system for the number of file descriptors is a
ridiculously large integer. Is it even possible to open that many? Likely not, I'm
sure you'd run into hardware constraints before that many resources could be
opened at once.

On my system that number actually represents infinity. It's repeated in the
constant Process::RLIM_INFINITY . Try comparing those two values to be sure. So,
on my system, I can effectively open as many resources as I'd like, once I bump the
soft limit for my needs.

So any process is able to change its own soft limit, but what about the hard limit?
Typically that can only be done by a superuser. However, your process is also able to
bump the hard limit assuming it has the required permissions. If you're interested in
changing the limits at a system-wide level then start by having a look at sysctl(8).
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Bumping the Soft Limit
Let's go ahead and bump the soft limit for the current process:

Process.setrlimit(:NOFILE, 4096)
p Process.getrlimit(:NOFILE)

outputs:

[4096, 4096]

You can see that we set a new limit for the number of open files, and upon asking for
that limit again both the hard limit and the soft limit were set to the new value 4096.

We can optionally pass a third argument to Process.setrlimit specifying a new hard
limit as well, assuming we have the permissions to do so. Note that lowering the hard
limit, as we did in that last snippet, is irreversible: once it comes down it won't go back
up.

The following example is a common way to raise the soft limit of a system resource to
be equal with the hard limit, the maximum allowed value.

Process.setrlimit(:NOFILE, Process.getrlimit(:NOFILE)[1])
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Exceeding the Limit
Note that exceeding the soft limit will raise Errno::EMFILE :

# Set the maximum number of open files to 3. We know this
# will be maxed out because the standard streams occupy
# the first three file descriptors.
Process.setrlimit(:NOFILE, 3)

File.open('/dev/null')

outputs:

Errno::EMFILE: Too many open files - /dev/null

Other Resources
You can use these same methods to check and modify limits on other system
resources. Some common ones are:
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# The maximum number of simultaneous processes
# allowed for the current user.
Process.getrlimit(:NPROC)

# The largest size file that may be created.
Process.getrlimit(:FSIZE)

# The maximum size of the stack segment of the
# process.
Process.getrlimit(:STACK)

Have a look at the documentation 1 for Process.getrlimit for a full listing of the
available options.

In the Real World
Needing to modify limits for system resources isn't a common need for most
programs. However, for some specialized tools this can be very important.

One use case is any process needing to handle thousands of simultaneous network
connections. An example of this is the httperf(1) http performance tool. A command
like httperf --hog --server www --num-conn 5000 will ask httperf(1) to create 5000
concurrent connections. Obviously this will be a problem on my system due to its
default soft limit, so httperf(1) will need to bump its soft limit before it can properly do
its testing.

1. http://www.ruby-doc.org/core-1.9.3/Process.html#method-c-setrlimit
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Another real world use case for limiting system resources is a situation where you
execute third-party code and need to keep it within certain constraints. You could set
limits for the processes running that code and revoke the permissions required to
change them, hence ensuring that they don't use more resources than you allow for
them.

System Calls
Ruby's Process.getrlimit and Process.setrlimit map to getrlimit(2) and setrlimit(2),
respectively.
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Chapter 7

Processes Have an
Environment
Environment, in this sense, refers to what's known as 'environment variables'.
Environment variables are key-value pairs that hold data for a process.

Every process inherits environment variables from its parent. They are set by a parent
process and inherited by its child processes. Environment variables are per-process
and are global to each process.

Here's a simple example of setting an environment variable in a bash shell, launching a
Ruby process, and reading that environment variable.

$ MESSAGE='wing it' ruby -e "puts ENV['MESSAGE']"

The VAR=value syntax is the bash way of setting environment variables. The same thing
can be accomplished in Ruby using the ENV constant.

# The same thing, with places reversed!
ENV['MESSAGE'] = 'wing it'
system "echo $MESSAGE"

Both of these examples print:
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wing it

In bash environment variables are accessed using the syntax: $VAR . As you can tell
from these few examples environment variables can be used to share state between
processes running different languages, bash and ruby in this case.

It's a hash, right?
Although ENV uses the hash-style accessor API it's not actually a Hash . For instance, it
implements Enumerable and some of the Hash API, but not all of it. Key methods like
merge are not implemented. So you can do things like ENV.has_key? , but don't count
on all hash operations working.

puts ENV['EDITOR']
puts ENV.has_key?('PATH')
puts ENV.is_a?(Hash)

outputs:

vim
true
false
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In the Real World
In the real world environment variables have many uses. Here's a few that are common
workflows in the Ruby community:

$ RAILS_ENV=production rails server
$ EDITOR=mate bundle open actionpack
$ QUEUE=default rake resque:work

Environment variables are often used as a generic way to accept input into a
command-line program. Any terminal (on Unix or Windows) already supports them
and most programmers are familiar with them. Using environment variables is often
less overhead than explicitly parsing command line options.

System Calls
There are no system calls for directly manipulating environment variables, but the C
library functions setenv(3) and getenv(3) do the brunt of the work. Also have a look at
environ(7) for an overview.
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Chapter 8

Processes Have Arguments
Every process has access to a special array called ARGV . Other programming languages
may implement it slightly differently, but every one has something called 'argv'.

argv is a short form for 'argument vector'. In other words: a vector, or array, of
arguments. It holds the arguments that were passed in to the current process on the
command line. Here's an example of inspecting ARGV and passing in some simple
options.

$ cat argv.rb
p ARGV
$ ruby argv.rb foo bar -va
["foo", "bar", "-va"]

It's an Array!
Unlike the previous chapter, where we learned that ENV isn't a Hash , ARGV is simply an
Array . You can add elements to it, remove elements from it, change the elements it
contains, whatever you like. But if it simply represents the arguments passed in on the
command line why would you need to change anything?

Some libraries will read from ARGV to parse command line options, for example. You
can programmatically change ARGV before they have a chance to see it in order to
modify the options at runtime.
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In the Real World
The most common use case for ARGV is probably for accepting filenames into a
program. It's very common to write a program that takes one or more filenames as
input on the command line and does something useful with them.

The other common use case, as mentioned, is for parsing command line input. There
are many Ruby libraries for dealing with command line input. One called optparse is
available as part of the standard library.

But now that you know how ARGV works you can skip that extra overhead for simple
command line options and do it by hand. If you just want to support a few flags you
can implement them directly as array operations.

# did the user request help?
ARGV.include?('--help')
# get the value of the -c option
ARGV.include?('-c') && ARGV[ARGV.index('-c') + 1]
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Chapter 9

Processes Have Names
Unix processes have very few inherent ways of communicating about their state.

Programmers have worked around this and invented things like logfiles. Logfiles allow
processes to communicate anything they want about their state by writing to the
filesystem, but this operates at the level of the filesystem rather than being inherent to
the process itself.

Similarly, processes can use the network to open sockets and communicate with other
processes. But again, that operates at a different level than the process itself, since it
relies on the network.

There are two mechanisms that operate at the level of the process itself that can be
used to communicate information. One is the process name, the other is exit codes.

Naming Processes
Every process on the system has a name. For example, when you start up an irb
session that process is given the name 'irb'. The neat thing about process names is that
they can be changed at runtime and used as a method of communication.

In Ruby you can access the name of the current process in the $PROGRAM_NAME variable.
Similarly, you can assign a value to that global variable to change the name of the
current process.
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puts $PROGRAM_NAME

10.downto(1) do |num|
$PROGRAM_NAME = "Process: #{num}"
puts $PROGRAM_NAME

end

outputs:

irb
Process: 10
Process: 9
Process: 8
Process: 7
Process: 6
Process: 5
Process: 4
Process: 3
Process: 2
Process: 1

As a fun exercise you can start an irb session, print the pid, and change the process
name. Then you can use the ps(1) utility to see your changes reflected on the system.

Unfortunately this global variable (and its mirror $0 ) is the only mechanism
provided by Ruby for this feature. There is not a more intent-revealing way to
change the name of the current process.
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In the Real World
To see an example of how this is used in a real project read through How Resque
Manages Processes in the appendices.
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Chapter 10

Processes Have Exit Codes
When a process comes to an end it has one last chance to make its mark on the world:
its exit code. Every process that exits does so with a numeric exit code (0-255)
denoting whether it exited successfully or with an error.

Traditionally, a process that exits with an exit code of 0 is said to be successful. Any
other exit code denotes an error, with different codes pointing to different errors.

Though traditionally they're used to denote different errors, they're really just a
channel for communication. All you need to do is handle the different exit codes that a
process may exit with in a way that suits your program and you've gotten away from
the traditions.

It's usually a good idea to stick with the '0 as success' exit code tradition so that your
programs will play nicely with other Unix tools.

How to Exit a Process
There are several ways you can exit a process in Ruby, each for different purposes.

exit

The simplest way to exit a process is using Kernel#exit . This is also what happens
implicitly when your script ends without an explicit exit statement.
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# This will exit the program with the success status code (0).
exit

# You can pass a custom exit code to this method
exit 22

# When Kernel#exit is invoked, before exiting Ruby invokes any blocks
# defined by Kernel#at_exit.
at_exit { puts 'Last!' }
exit

will output:

Last!

exit!

Kernel#exit! is almost exactly the same as Kernel#exit , but with two key differences.
The first is that it sets an unsuccessful status code by default (1), and the second is that
it will not invoke any blocks defined using Kernel#at_exit .

# This will exit the program with a status code 1.
exit!
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# You can still pass an exit code.
exit! 33

# This block will never be invoked.
at_exit { puts 'Silence!' }
exit!

abort

Kernel#abort provides a generic way to exit a process unsuccessfully. Kernel#abort will
set the exit code to 1 for the current process.

# Will exit with exit code 1.
abort

# You can pass a message to Kernel#abort. This message will be printed
# to STDERR before the process exits.
abort "Something went horribly wrong."

# Kernel#at_exit blocks are invoked when using Kernel#abort.
at_exit { puts 'Last!' }
abort "Something went horribly wrong."

will output:
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Something went horribly wrong.
Last!

raise

A different way to end a process is with an unhandled exception. This is something
that you never want to happen in a production environment, but it's almost always
happening in development and test environments.

Note that Kernel#raise , unlike the previous methods, will not exit the process
immediately. It simply raises an exception that may be rescued somewhere up the
stack. If the exception is not rescued anywhere in the codebase then the unhandled
exception will cause the process to exit.

Ending a process this way will still invoke any at_exit handlers and will print the
exception message and backtrace to STDERR .

# Similar to abort, an unhandled exception will set the exit code to 1.
raise 'hell'
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Chapter 11

Processes Can Fork
Use the fork(2), Luke
Forking is one of the most powerful concepts in Unix programming. The fork(2)
system call allows a running process to create new process programmatically. This new
process is an exact copy of the original process.

Up until now we've talked about creating processes by launching them from the
terminal. We've also mentioned low level operating system processes that create other
processes: fork(2) is how they do it.

When forking, the process that initiates the fork(2) is called the "parent", and the
newly created process is called the "child".

The child process inherits a copy of all of the memory in use by the parent
process, as well as any open file descriptors belonging to the parent process.
Let's take a moment to review child processes from the eye of our first three chapters.

Since the child process is an entirely new process, it gets its own unique pid.

The parent of the child process is, obviously, its parent process. So its ppid is set to the
pid of the process that initiated the fork(2).
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The child process inherits any open file descriptors from the parent at the time of the
fork(2). It's given the same map of file descriptor numbers that the parent process has.
In this way the two processes can share open files, sockets, etc.

The child process inherits a copy of everything that the parent process has in main
memory. In this way a process could load up a large codebase, say a Rails app, that
occupies 500MB of main memory. Then this process can fork 2 new child processes.
Each of these child processes would effectively have their own copy of that codebase
loaded in memory.

The call to fork returns near-instantly so we now have 3 processes with each using
500MB of memory. Perfect for when you want to have multiple instances of your
application loaded in memory at the same time. Because only one process needs to
load the app and forking is fast, this method is faster than loading the app 3 times in
separate instances.

The child processes would be free to modify their copy of the memory without
affecting what the parent process has in memory. See the next chapter for a discussion
of copy-on-write and how it affects memory when forking.

Let's get started with forking in Ruby by looking at a mind-bending example:

if fork
puts "entered the if block"

else
puts "entered the else block"

end

outputs:
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entered the if block
entered the else block

WTF! What's going on here? A call to the fork method has taken the once-familiar
if construct and turned it on its head. Somehow this piece of code is entering both
the if and else block of the if construct!

It's no mystery what's happening here. One call to the fork method actually returns
twice. Remember that fork creates a new process. So it returns once in the calling
process (parent) and once in the newly created process (child).

The last example becomes more obvious if we print the pids.

puts "parent process pid is #{Process.pid}"

if fork
puts "entered the if block from #{Process.pid}"

else
puts "entered the else block from #{Process.pid}"

end

outputs:

parent process is 21268
entered the if block from 21268
entered the else block from 21282
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Now it becomes clear that the code in the if block is being executed by the parent
process, while the code in the else block is being executed by the child process. The
child process will exit after executing its code in the else block, while the parent
process will carry on.

Again, there's a rhythm to this beat, and it has to do with the return value of the fork
method. In the child process fork returns nil . Since nil is falsy it executes the
code in the else block.

In the parent process fork returns the pid of the newly created child process.
Since an integer is truthy it executes the code in the if block.

This concept is illustrated nicely by simply printing the return value of a fork call.

puts fork

outputs

21423
nil

Here we have the two different return values. The first value returned is the pid of the
newly created child process; this comes from the parent. The second return value is
the nil from the child process.
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Multicore Programming?
In a roundabout way, yes. By making new processes it means that your code is able,
but not guaranteed, to be distributed across multiple CPU cores.

Given a system with 4 CPUs, if you fork 4 new processes then those can be handled
each by a separate CPU, giving you multicore concurrency.

However, there's no guarantee that stuff will be happening in parallel. On a busy
system it's possible that all 4 of your processes are handled by the same CPU.

fork(2) creates a new process that's a copy of the old process. So if a process is
using 500MB of main memory, then it forks, now you have 1GB in main memory.

Do this another ten times and you can quickly exhaust main memory. This is often
called a fork bomb. Before you turn up the concurrency make sure that you know
the consequences.

Using a Block
In the example above we've demonstrated fork with an if/else construct. It's also
possible, and more common in Ruby code, to use fork with a block.

When you pass a block to the fork method that block will be executed in the new
child process, while the parent process simply skips over it. The child process exits
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when it's done executing the block. It does not continue along the same code path as
the parent.

fork do
# Code here is only executed in the child process

end

# Code here is only executed in the parent process.

In the Real World
Have a look at either of the appendices, or the attached Spyglass project, to see some
real-world examples of using fork(2).

System Calls
Ruby's Kernel#fork maps to fork(2).
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Chapter 12

Orphaned Processes
Out of Control
You may have noticed when running the examples in the last chapter that when child
processes are involved, it's no longer possible to control everything from a terminal
like we're used to.

When starting a process via a terminal, we normally have only one process writing to
STDOUT , taking keyboard input, or listening for that Ctrl-C telling it to exit.

But once that process has forked child processes that all becomes a little more difficult.
When you press Ctrl-C which process should exit? All of them? Only the parent?

It's good to know about this stuff because it's actually very easy to create orphaned
processes:

fork do
5.times do
sleep 1
puts "I'm an orphan!"

end
end

abort "Parent process died..."
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If you run this program from a terminal you'll notice that since the parent process dies
immediately the terminal returns you to the command prompt. At which point, it's
overwritten by the STDOUT from the child process! Strange things can start to happen
when forking processes.

Abandoned Children
What happens to a child process when its parent dies?

The short answer is, nothing. That is to say, the operating system doesn't treat child
processes any differently than any other processes. So, when the parent process dies
the child process continues on; the parent process does not take the child down with
it.

Managing Orphans
Can you still manage orphaned processes?

We're getting a bit ahead of ourselves with this question, but it touches on two
interesting concepts.

The first is something called daemon processes. Daemon processes are long running
processes that are intentionally orphaned and meant to stay running forever. These are
covered in detail in a later chapter.
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The second interesting bit here is communicating with processes that are not attached
to a terminal session. You can do this using something called Unix signals. This is also
covered in more detail in a later chapter.

We'll soon talk about how to properly manage and control child processes.
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Chapter 13

Processes Are Friendly
Let's take a step back from looking at code for a minute to talk about a higher level
concept and how it's handled in different Ruby implementations.

Being CoW Friendly
As mentioned in the forking chapter, fork(2) creates a new child process that's an exact
copy of the parent process. This includes a copy of everything the parent process has in
memory.

Physically copying all of that data can be considerable overhead, so modern Unix
systems employ something called copy-on-write semantics (CoW) to combat this.

As you may have guessed from the name, CoW delays the actual copying of memory
until it needs to be written.

So a parent process and a child process will actually share the same physical data in
memory until one of them needs to modify it, at which point the memory will be
copied so that proper separation between the two processes can be preserved.
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arr = [1,2,3]

fork do
# At this point the child process has been initialized.
# Using CoW this process doesn't need to copy the arr variable,
# since it hasn't modified any shared values it can continue reading
# from the same memory location as the parent process.
p arr

end

arr = [1,2,3]

fork do
# At this point the child process has been initialized.
# Because of CoW the arr variable hasn't been copied yet.
arr << 4
# The above line of code modifies the array, so a copy of
# the array will need to be made for this process before
# it can modify it. The array in the parent process remains
# unchanged.

end

This is a big win when using fork(2) as it saves on resources. It means that fork(2) is
fast since it doesn't need to copy any of the physical memory of the parent. It also
means that child processes only get a copy of the data they need, the rest can be
shared.

In order for you to have CoW semantics, a Ruby implementation needs to be written in
such a way that it doesn't clobber this feature provided by the kernel. Versions of MRI
>= 2.0 are written in such a way that they respect and preserve these semantics.
Versions of MRI <= 1.9 did not preserve the semantics.
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But how?

MRI's garbage collector uses a 'mark-and-sweep' algorithm. In a nutshell this
means that when the GC is invoked it must traverse the graph of live objects, and
for each one the GC must 'mark' it as alive.

In MRI <= 1.9, this 'mark' step was implemented as a modification to that object in
memory. So when the GC was invoked right after a fork , all live objects were
modified, forcing the OS to make copies of all live Ruby objects and foregoing any
benefit from CoW semantics.

MRI >= 2.0 still uses a mark-and-sweep GC, but preserves CoW semantics by
storing all of the 'marks' in a small data structure in a disparate region of memory.
So when the GC runs after a fork , this small region of memory must be copied,
but the graph of live Ruby objects can be shared between parent and child until
your code modifies an object.

What does this mean for you?

If you're building something, or using tools, that depend heavily on fork(2), you should
expect much better memory utilization with MRI 2.0 than with earlier versions.
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Chapter 14

Processes Can Wait
In the examples of fork(2) up until now we have let the parent process continue on in
parallel with the child process. In some cases this led to weird results, such as when
the parent process exited before the child process.

That kind of scenario is really only suitable for one use case, fire and forget. It's useful
when you want a child process to handle something asynchronously, but the parent
process still has its own work to do.

message = 'Good Morning'
recipient = 'tree@mybackyard.com'

fork do
# In this contrived example the parent process forks a child to take
# care of sending data to the stats collector. Meanwhile the parent
# process has continued on with its work of sending the actual payload.

# The parent process doesn't want to be slowed down with this task, and
# it doesn't matter if this would fail for some reason.
StatsCollector.record message, recipient

end

# send message to recipient
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Babysitting
For most other use cases involving fork(2) you'll want some way to keep tabs on your
child processes. In Ruby, one technique for this is provided by Process.wait . Let's
rewrite our orphan-inducing example from the last chapter to perform with less
surprises.

fork do
5.times do
sleep 1
puts "I am an orphan!"

end
end

Process.wait
abort "Parent process died..."

This time the output will look like:

I am an orphan!
I am an orphan!
I am an orphan!
I am an orphan!
I am an orphan!
Parent process died...

Not only that, but control will not be returned to the terminal until all of the output
has been printed.
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So what does Process.wait do? Process.wait is a blocking call instructing the
parent process to wait for one of its child processes to exit before continuing.

Process.wait and Cousins
I mentioned something key in that last statement, Process.wait blocks until any one
of its child processes exit. If you have a parent that's babysitting more than one child
process and you're using Process.wait , you need to know which one exited. For this,
you can use the return value.

Process.wait returns the pid of the child that exited. Check it out.

# We create 3 child processes.
3.times do
fork do
# Each one sleeps for a random amount of number less than 5 seconds.
sleep rand(5)

end
end

3.times do
# We wait for each child process to exit and print the pid that
# gets returned.
puts Process.wait

end
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Communicating with Process.wait2
But wait! Process.wait has a cousin called Process.wait2 !

Why the name confusion? It makes sense once you know that Process.wait returns 1
value (pid), but Process.wait2 returns 2 values (pid, status).

This status can be used as communication between processes via exit codes. In our
chapter on Exit Codes we mentioned that you can use exit codes to encode
information for other processes. Process.wait2 gives you direct access to that
information.

The status returned from Process.wait2 is an instance of Process::Status . It has a lot
of useful information attached to it for figuring out exactly how a process exited.
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# We create 5 child processes.
5.times do
fork do
# Each generates a random number. If even they exit
# with a 111 exit code, otherwise they use a 112 exit code.
if rand(5).even?
exit 111

else
exit 112

end
end

end

5.times do
# We wait for each of the child processes to exit.
pid, status = Process.wait2

# If the child process exited with the 111 exit code
# then we know they encountered an even number.
if status.exitstatus == 111
puts "#{pid} encountered an even number!"

else
puts "#{pid} encountered an odd number!"

end
end

Communication between processes without the filesystem or network!
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Waiting for Specific Children
But wait! The Process.wait cousins have two more cousins. Process.waitpid and
Process.waitpid2 .

You can probably guess what these do. They function the same as Process.wait and
Process.wait2 except, rather than waiting for any child to exit they only wait for a
specific child to exit, specified by pid.

favourite = fork do
exit 77

end

middle_child = fork do
abort "I want to be waited on!"

end

pid, status = Process.waitpid2 favourite
puts status.exitstatus

Although it appears that Process.wait and Process.waitpid provide different
behaviour don't be fooled! They are actually aliased to the same thing. Both will
accept the same arguments and behave the same.

You can pass a pid to Process.wait in order to get it to wait for a specific child, and
you can pass -1 as the pid to Process.waitpid to get it to wait for any child process.
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The same is true for Process.wait2 and Process.waitpid2 .

Just like with Process.pid vs. $$ I think it's important that, as programmers, we
use the provided tools to reveal our intent where possible. Although these
methods are identical you should use Process.wait when you're waiting for any
child process and use Process.waitpid when you're waiting for a specific process.

Race Conditions
As you look at these simple code examples you may start to wonder about race
conditions.

What if the code that handles one exited process is still running when another child
process exits? What if I haven't gotten back around to Process.wait and another
process exits? Let's see:
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# We create two child processes.
2.times do
fork do
# Both processes exit immediately.
abort "Finished!"

end
end

# The parent process waits for the first process, then sleeps for 5 seconds.
# In the meantime the second child process has exited and is no
# longer running.
puts Process.wait
sleep 5

# The parent process asks to wait once again, and amazingly enough, the second
# process' exit information has been queued up and is returned here.
puts Process.wait

As you can see this technique is free from race conditions. The kernel queues up
information about exited processes so that the parent always receives the information
in the order that the children exited.

So even if the parent is slow at processing each exited child it will always be able to get
the information for each exited child when it's ready for it.

Take note that calling any variant of Process.wait when there are no child
processes will raise Errno::ECHILD . It's always a good idea to keep track of how
many child processes you have created so you don't encounter this exception.
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In the Real World
The idea of looking in on your child processes is at the core of a common Unix
programming pattern. The pattern is sometimes called babysitting processes, master/
worker, or preforking.

At the core of this pattern is the concept that you have one process that forks several
child processes, for concurrency, and then spends its time looking after them: making
sure they are still responsive, reacting if any of them exit, etc.

For example, the Unicorn web server 1 employs this pattern. You tell it how many
worker processes you want it to start up for you, 5 for instance.

Then a unicorn process will boot up that will fork 5 child processes to handle web
requests. The parent (or master) process maintains a heartbeat with each child and
ensures that all of the child processes stay responsive.

This pattern allows for both concurrency and reliability. Read more about Unicorn in
its Appendix at the end of the book.

For an alternative usage of this technique read through the Lookout class in the
attached Spyglass project.

System Calls
Ruby's Process.wait and cousins map to waitpid(2).

1. http://unicorn.bogomips.org
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Chapter 15

Zombie Processes
At the beginning of the last chapter we looked at an example that used a child process
to asynchronously handle a task in a fire and forget manner. We need to revisit that
example and ensure that we clean up that child process appropriately, lest it become a
zombie!

Good Things Come to Those Who wait(2)
In the last chapter I showed that the kernel queues up status information about child
processes that have exited. So even if you call Process.wait long after the child process
has exited its status information is still available. I'm sure you can smell a problem
here...

The kernel will retain the status of exited child processes until the parent process
requests that status using Process.wait . If the parent never requests the status then
the kernel can never reap that status information. So creating fire and forget child
processes without collecting their status information is a poor use of kernel resources.

If you're not going to wait for a child process to exit using Process.wait (or the
technique described in the next chapter) then you need to 'detach' that child
process. Here's the fire and forget example from last chapter rectified to properly
detach the child process:
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message = 'Good Morning'
recipient = 'tree@mybackyard.com'

pid = fork do
# In this contrived example the parent process forks a child to take
# care of sending data to the stats collector. Meanwhile the parent
# process has continued on with its work of sending the actual payload.

# The parent process doesn't want to be slowed down with this task, and
# it doesn't matter if this would fail for some reason.
StatsCollector.record message, recipient

end

# This line ensures that the process performing the stats collection
# won't become a zombie.
Process.detach(pid)

What does Process.detach do? It simply spawns a new thread whose sole job is to wait
for the child process specified by pid to exit. This ensures that the kernel doesn't hang
on to any status information we don't need.
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What Do Zombies Look Like?
# Create a child process that exits after 1 second.
pid = fork { sleep 1 }
# Print its pid.
puts pid
# Put the parent process to sleep so we can inspect the
# process status of the child
sleep 5

Running the following command at a terminal, using the pid printed from the last
snippet, will print the status of that zombie process. The status should say 'z' or 'Z+',
meaning that the process is a zombie.

ps -ho pid,state -p [pid of zombie process]

In The Real World
Notice that any dead process whose status hasn't been waited on is a zombie process.
So every child process that dies while its parent is still active will be a zombie, if only
for a short time. Once the parent process collects the status from the zombie then it
effectively disappears, no longer consuming kernel resources.

It's fairly uncommon to fork child processes in a fire and forget manner, never
collecting their status. If work needs to be offloaded in the background it's much more
common to do that with a dedicated background queueing system.
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That being said there is a Rubygem called spawnling 1 that provides this exact
functionality. Besides providing a generic API over processes or threads, it ensures that
fire and forget processes are properly detached.

System Calls
There's no system call for Process.detach because it's implemented in Ruby simply as a
thread and Process.wait . The implementation in Rubinius 2 is stark in its simplicity.

1. https://github.com/tra/spawnling
2. https://github.com/rubinius/rubinius/blob/c6e8e33b37601d4a082ddcbbd60a568767074771/kernel/common/

process.rb#L377-395
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Chapter 16

Processes Can Get Signals
In the last chapter we looked at Process.wait . It provides a nice way for a parent
process to keep tabs on its child processes. However it is a blocking call: it will not
return until a child process dies.

What's a busy parent to do? Not every parent has the luxury of waiting around on
their children all day. There is a solution for the busy parent! And it's our introduction
to Unix signals.

Trapping SIGCHLD
Let's take a simple example from the last chapter and rewrite it for a busy parent
process.

75



child_processes = 3
dead_processes = 0
# We fork 3 child processes.
child_processes.times do
fork do
# They sleep for 3 seconds.
sleep 3

end
end

# Our parent process will be busy doing some intense mathematics.
# But still wants to know when one of its children exits.

# By trapping the :CHLD signal our process will be notified by the kernel
# when one of its children exits.
trap(:CHLD) do
# Since Process.wait queues up any data that it has for us we can ask for it
# here, since we know that one of our child processes has exited.

puts Process.wait
dead_processes += 1
# We exit explicitly once all the child processes are accounted for.
exit if dead_processes == child_processes

end

# Work it.
loop do
(Math.sqrt(rand(44)) ** 8).floor
sleep 1

end
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SIGCHLD and Concurrency
Before we go on I must mention a caveat. Signal delivery is unreliable. By this I
mean that if your code is handling a CHLD signal while another child process dies you
may or may not receive a second CHLD signal.

This can lead to inconsistent results with the code snippet above. Sometimes the
timing will be such that things will work out perfectly, and sometimes you'll actually
'miss' an instance of a child process dying.

This behaviour only happens when receiving the same signal several times in quick
succession; you can always count on at least one instance of the signal arriving. This
same caveat is true for other signals you handle in Ruby; read on to hear more about
those.

To properly handle CHLD you must call Process.wait in a loop and look for as many
dead child processes as are available, since you may have received multiple CHLD
signals since entering the signal handler. But....isn't Process.wait a blocking call? If
there's only one dead child process and I call Process.wait again how will I avoid
blocking the whole process?

Now we get to the second argument to Process.wait . In the last chapter we looked at
passing a pid to Process.wait as the first argument, but it also takes a second
argument, flags. One such flag that can be passed tells the kernel not to block if no
child has exited. Just what we need!

There's a constant that represents the value of this flag, Process::WNOHANG , and it can
be used like so:
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Process.wait(-1, Process::WNOHANG)

Easy enough.

Here's a rewrite of the code snippet from the beginning of this chapter that won't
'miss' any child process deaths:
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child_processes = 3
dead_processes = 0
# We fork 3 child processes.
child_processes.times do
fork do
# They sleep for 3 seconds.
sleep 3

end
end

# Sync $stdout so the call to #puts in the CHLD handler isn't
# buffered. Can cause a ThreadError if a signal handler is
# interrupted after calling #puts. Always a good idea to do
# this if your handlers will be doing IO.
$stdout.sync = true

# Our parent process will be busy doing some intense mathematics.
# But still wants to know when one of its children exits.

# By trapping the :CHLD signal our process will be notified by the kernel
# when one of its children exits.
trap(:CHLD) do
# Since Process.wait queues up any data that it has for us we can ask for it
# here, since we know that one of our child processes has exited.

# We loop over a non-blocking Process.wait to ensure that any dead child
# processes are accounted for.
begin
while pid = Process.wait(-1, Process::WNOHANG)
puts pid
dead_processes += 1

end
rescue Errno::ECHILD
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end
end

loop do
# We exit ourself once all the child processes are accounted for.
exit if dead_processes == child_processes

sleep 1
end

One more thing to remember is that Process.wait , even this variant, will raise
Errno::ECHILD if no child processes exist. Since signals might arrive at any time it's
possible for the last CHLD signal to arrive after the previous CHLD handler has
already called Process.wait twice and gotten the last available status. This
asynchronous stuff can be mind-bending. Any line of code can be interrupted with a
signal. You've been warned!

So you must handle the Errno::ECHILD exception in your CHLD signal handler. Also if
you don't know how many child processes you are waiting on you should rescue that
exception and handle it properly.

Signals Primer
This was our first foray to Unix signals. Signals are asynchronous communication.
When a process receives a signal from the kernel it can do one of the following:

1. ignore the signal

2. perform a specified action
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3. perform the default action

Where do Signals Come From?
Technically signals are sent by the kernel, just like text messages are sent by a cell
phone carrier. But text messages have an original sender, and so do signals. Signals are
sent from one process to another process, using the kernel as a middleman.

The original purpose of signals was to specify different ways that a process should be
killed. Let's start there.

Let's start up two ruby programs and we'll use one to kill the other.

For these examples we won't use irb because it defines its own signal handlers
that get in the way of our demonstrations. Instead we'll just use the ruby program
itself.

Give this a try: launch the ruby program without any arguments. Enter some code.
Hit Ctrl-D.

This executes the code that you entered and then exits.

Start up two ruby processes using the technique mentioned above and we'll kill one of
them using a signal.

1. In the first ruby session execute the following code:

81



puts Process.pid
sleep # so that we have time to send it a signal

2. In the second ruby session issue the following command to kill the first session
with a signal:

Process.kill(:INT, <pid of first session>)

So the second process sent an "INT" signal to the first process, causing it to exit. "INT"
is short for "INTERRUPT".

The system default when a process receives this signal is that it should interrupt
whatever it's doing and exit immediately.

The Big Picture
Below is a table showing signals commonly supported on Unix systems. Every Unix
process will be able to respond to these signals and any signal can be sent to any
process.

When naming signals the SIG portion of the name is optional. The Action column in
the table describes the default action for each signal:

Term
means that the process will terminate immediately
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Core
means that the process will terminate immediately and dump core (stack trace)

Ign
means that the process will ignore the signal

Stop
means that the process will stop (ie pause)

Cont
means that the process will resume (ie unpause)
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Signal   Value     Action   Comment
-------------------------------------------------------------------------
SIGHUP      1       Term    Hangup detected on controlling terminal

or death of controlling process
SIGINT      2       Term    Interrupt from keyboard
SIGQUIT     3       Core    Quit from keyboard
SIGILL          4       Core    Illegal Instruction
SIGABRT         6       Core    Abort signal from abort(3)
SIGFPE          8       Core    Floating point exception
SIGKILL         9       Term    Kill signal
SIGSEGV        11       Core    Invalid memory reference
SIGPIPE        13       Term    Broken pipe: write to pipe with no readers
SIGALRM        14       Term    Timer signal from alarm(2)
SIGTERM        15       Term    Termination signal
SIGUSR1     30,10,16    Term    User-defined signal 1
SIGUSR2     31,12,17    Term    User-defined signal 2
SIGCHLD     20,17,18    Ign     Child stopped or terminated
SIGCONT     19,18,25    Cont    Continue if stopped
SIGSTOP     17,19,23    Stop    Stop process
SIGTSTP     18,20,24    Stop    Stop typed at tty
SIGTTIN     21,21,26    Stop    tty input for background process
SIGTTOU     22,22,27    Stop    tty output for background process

The signals SIGKILL and SIGSTOP cannot be trapped, blocked, or ignored.

This table might seem a bit out of left field, but it gives you a rough idea of what to
expect when you send a certain signal to a process. You can see that, by default, most
of the signals terminate a process.

It's interesting to note the SIGUSR1 and SIGUSR2 signals. These are signals whose action
is meant specifically to be defined by your process. We'll see shortly that we're free to
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redefine any of the signal actions that we please, but those two signals are meant for
your use.

Redefining Signals
Let's go back to our two ruby sessions and have some fun.

1. In the first ruby session use the following code to redefine the behaviour of the
INT signal:

puts Process.pid
trap(:INT) { print "Na na na, you can't get me" }
sleep # so that we have time to send it a signal

Now our process won't exit when it receives the INT signal.

2. In the second ruby session issue the following command and notice that the
first process is taunting us!

Process.kill(:INT, <pid of first session>)

3. You can try using Ctrl-C to kill that first session, and notice that it responds
the same!

4. But as the table said there are some signals that cannot be redefined. SIGKILL
will show that guy who's boss.
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Process.kill(:KILL, <pid of first session>)

Ignoring Signals
1. In the first ruby session use the following code:

puts Process.pid
trap(:INT, "IGNORE")
sleep # so that we have time to send it a signal

2. In the second ruby session issue the following command and notice that the
first process isn't affected.

Process.kill(:INT, <pid of first session>)

The first ruby session is unaffected.

Signal Handlers are Global
Signals are a great tool and are the perfect fit for certain situations. But it's good to
keep in mind that trapping a signal is a bit like using a global variable, you might
be overwriting something that some other code depends on. And unlike global
variables signal handlers can't be namespaced.
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So make sure you read this next section before you go and add signal handlers to all of
your open source libraries :)

Being Nice about Redefining Signals
There is a way to preserve handlers defined by other Ruby code, so that your signal
handler won't trample any other ones that are already defined. It looks something like
this:

trap(:INT) { puts 'This is the first signal handler' }

old_handler = trap(:INT) {
old_handler.call
puts 'This is the second handler'
exit

}
sleep 5 # so that we have time to send it a signal

Just send it a Ctrl-C to see the effect. Both signal handlers are called.

Now let's see if we can preserve the system default behaviour. Hit the code below with
a Ctrl-C.

system_handler = trap(:INT) {
puts 'about to exit!'
system_handler.call

}
sleep 5 # so that we have time to send it a signal
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:/ It blew up that time. So we can't preserve the system default behaviour with this
technique, but we can preserve other Ruby code handlers that have been defined.

In terms of best practices your code probably shouldn't define any signal handlers,
unless it's a server. As in a long-running process that's booted from the command
line. It's very rare that library code should trap a signal.

# The 'friendly' method of trapping a signal.

old_handler = trap(:QUIT) {
# do some cleanup
puts 'All done!'

old_handler.call if old_handler.respond_to?(:call)
}

This handler for the QUIT signal will preserve any previous QUIT handlers that have
been defined. Though this looks 'friendly' it's not generally a good idea. Imagine a
scenario where a Ruby server tells its users they can send it a QUIT signal and it will
do a graceful shutdown. You tell the users of your library that they can send a QUIT
signal and it will draw an ASCII rainbow. Now if a user sends the QUIT signal both
handlers will be invoked. This violates the expectations of both libraries.

Whether or not you decide to preserve previously defined signal handlers is up to you,
just make sure you know why you're doing it. If you simply want to wire up some
behaviour to clean up resources before exiting you can use an at_exit hook, which we
touched on in the chapter about exit codes.
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When Can't You Receive Signals?
Your process can receive a signal anytime. That's the beauty of them! They're
asynchronous.

Your process can be pulled out of a busy for-loop into a signal handler, or even out of a
long sleep . Your process can even be pulled from one signal handler to another if it
receives one signal while processing another. But, as expected, it will always go back
and finish the code in all the handlers that are invoked.

In the Real World
With signals, any process can communicate with any other process on the system, so
long as it knows its pid. This makes signals a very powerful communication tool. It's
common to send signals from the shell using kill(1).

In the real world signals are mostly used by long running processes like servers and
daemons. And for the most part it will be the human users who are sending signals
rather than automated programs.

For instance, the Unicorn web server 1 responds to the INT signal by killing all of its
processes and shutting down immediately. It responds to the USR2 signal by re-
executing itself for a zero-downtime restart. It responds to the TTIN signal by
incrementing the number of worker processes it has running.

1. http://unicorn.bogomips.org
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See the SIGNALS file included with Unicorn 2 for a full list of the signals it supports
and how it responds to them.

The memprof project has a interesting example of being a friendly citizen when
handling signals 3.

System Calls
Ruby's Process.kill maps to kill(2), Kernel#trap maps roughly to sigaction(2).
signal(7) is also useful.

2. http://unicorn.bogomips.org/SIGNALS.html
3. https://github.com/ice799/memprof/blob/d4bc228aca323b58fea92dbde20c1f8ec36e5386/lib/memprof/signal.rb#L8-16
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Chapter 17

Processes Can Communicate
Up until now we've looked at related processes that share memory and share open
resources. But what about communicating information between multiple processes?

This is part of a whole field of study called Inter-process communication (IPC for
short). There are many different ways to do IPC but I'm going to cover two commonly
useful methods: pipes and socket pairs.

Our First Pipe
A pipe is a uni-directional stream of data. In other words you can open a pipe, one
process can 'claim' one end of it and another process can 'claim' the other end. Then
data can be passed along the pipe but only in one direction. So if one process 'claims'
the position of reader, rather than writer, it will not be able to write to the pipe. And
vice versa.

Before we involve multiple processes let's just look at how to create a pipe and what we
get from that:

reader, writer = IO.pipe #=> [#<IO:fd 5>, #<IO:fd 6>]

IO.pipe returns an array with two elements, both of which are IO objects. Ruby's
amazing IO class 1 is the superclass to File , TCPSocket , UDPSocket , and others. As such,
all of these resources have a common interface.
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The IO objects returned from IO.pipe can be thought of something like anonymous
files. You can basically treat them the same way you would a File . You can call #read ,
#write , #close , etc. But this object won't respond to #path and won't have a location
on the filesystem.

Still holding back from bringing in multiple processes let's demonstrate
communication with a pipe:

reader, writer = IO.pipe
writer.write("Into the pipe I go...")
writer.close
puts reader.read

outputs

Into the pipe I go...

Pretty simple right? Notice that I had to close the writer after I wrote to the pipe?
That's because when the reader calls IO#read it will continue trying to read data until
it sees an EOF (aka. end-of-file marker 2). This tells the reader that no more data will
be available for reading.

So long as the writer is still open the reader might see more data, so it waits. By closing
the writer before reading it puts an EOF on the pipe so the reader stops reading after it
gets the initial data. If you skip closing the writer then the reader will block and
continue trying to read indefinitely.

1. http://librelist.com/browser//usp.ruby/2011/9/17/the-ruby-io-class/
2. http://en.wikipedia.org/wiki/End-of-file
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Pipes Are One-Way Only
reader, writer = IO.pipe
reader.write("Trying to get the reader to write something")

outputs

>> reader.write("Trying to get the reader to write something")
IOError: not opened for writing

from (irb):2:in `write'
from (irb):2

The IO objects returned by IO.pipe can only be used for uni-directional
communication. So the reader can only read and the writer can only write.

Now let's introduce processes into the mix.

Sharing Pipes
In the chapter on forking I described how open resources are shared, or copied, when
a process forks a child. Pipes are considered a resource, they get their own file
descriptors and everything, so they are shared with child processes.

Here's a simple example of using a pipe to communicate between a parent and child
process. The child indicates to the parent that it has finished an iteration of work by
writing to the pipe:
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reader, writer = IO.pipe

fork do
reader.close

10.times do
# heavy lifting
writer.puts "Another one bites the dust"

end
end

writer.close
while message = reader.gets
$stdout.puts message

end

outputs Another one bites the dust ten times.

Notice that, like above, the unused ends of the pipe are closed so as not to interfere
with EOF being sent. There's actually one more layer when considering EOF now that
two processes are involved. Since the file descriptors were copied there's now 4
instances floating around. Since only two of them will be used to communicate the
other 2 instances must be closed. Hence the extra instances of closing.

Since the ends of the pipe are IO objects we can call any IO methods on them, not just
#read and #write . In this example I use #puts and #gets to read and write a String
delimited with a newline. I actually used those here to simplify one aspect of pipes:
pipes hold a stream of data.
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Streams vs. Messages
When I say stream I mean that when writing and reading data to a pipe there's no
concept of beginning and end. When working with an IO stream, like pipes or TCP
sockets, you write your data to the stream followed by some protocol-specific
delimiter. For example, HTTP uses a series of newlines to delimit the headers from the
body.

Then when reading data from that IO stream you read it in one chunk at a time,
stopping when you come across the delimiter. That's why I used #puts and #gets in
the last example: it used a newline as the delimiter for me.

As you may have guessed it's possible to communicate via messages instead of streams.
We can't do it with pipe, but we can do it with Unix sockets. Without going into too
much detail, Unix sockets are a type of socket that can only communicate on the same
physical machine. As such it's much faster than TCP sockets and is a great fit for IPC.

Here's an example where we create a pair of Unix sockets that can communicate via
messages:

require 'socket'
Socket.pair(:UNIX, :DGRAM, 0) #=> [#<Socket:fd 15>, #<Socket:fd 16>]

This creates a pair of UNIX sockets that are already connected to each other. These
sockets communicate using datagrams, rather than a stream. In this way you write a
whole message to one of the sockets and read a whole message from the other socket.
No delimiters required.
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Here's a slightly more complex version of the pipe example where the child process
actually waits for the parent to tell it what to work on, then it reports back to the
parent once it's finished the work:

require 'socket'

child_socket, parent_socket = Socket.pair(:UNIX, :DGRAM, 0)
maxlen = 1000

fork do
parent_socket.close

4.times do
instruction = child_socket.recv(maxlen)
child_socket.send("#{instruction} accomplished!", 0)

end
end
child_socket.close

2.times do
parent_socket.send("Heavy lifting", 0)

end
2.times do
parent_socket.send("Feather lifting", 0)

end

4.times do
$stdout.puts parent_socket.recv(maxlen)

end

outputs:
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Heavy lifting accomplished!
Heavy lifting accomplished!
Feather lifting accomplished!
Feather lifting accomplished!

So whereas pipes provide uni-directional communication, a socket pair provides bi-
directional communication. The parent socket can both read and write to the child
socket, and vice versa.

Remote IPC?
IPC implies communication between processes running on the same machine. If
you're interested in scaling up from one machine to many machines while still doing
something resembling IPC there are a few things to look into. The first one would
simply be to communicate via TCP sockets. This option would require more
boilerplate code than the others for a non-trivial system. Other plausible solutions
would be RPC 3 (remote procedure call), a messaging system like ZeroMQ 4, or the
general body of distributed systems 5.

In the Real World
Both pipes and socket pairs are useful abstractions for communicating between
processes. They're fast and easy. They're often used as a communication channel
instead of a more brute force approach such as a shared database or log file.

3. http://en.wikipedia.org/wiki/Remote_procedure_call
4. http://www.zeromq.org/
5. http://en.wikipedia.org/wiki/Distributed_computing
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As for which method to use: it depends on your needs. Keep in mind that pipes are
uni-directional and socket pairs are bi-directional when weighing your decision.

For a more in-depth example have a look at the Spyglass Master class in the included
Spyglass project. It uses a more involved example of the code you saw above where
many child processes communicate over a single pipe with their parent process.

System Calls
Ruby's IO.pipe maps to pipe(2), Socket.pair maps to socketpair(2). Socket.recv maps
to recv(2) and Socket.send maps to send(2).
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Chapter 18

Daemon Processes
Daemon processes are processes that run in the background, rather than under the
control of a user at a terminal. Common examples of daemon processes are things like
web servers, or database servers which will always be running in the background in
order to serve requests.

Daemon processes are also at the core of your operating system. There are many
processes that are constantly running in the background that keep your system
functioning normally. These are things like the window server on a GUI system,
printing services or audio services so that your speakers are always ready to play that
annoying 'ding' notification.

The First Process
There is one daemon process in particular that has special significance for your
operating system. We talked in a previous chapter about every process having a parent
process. Can that be true for all processes? What about the very first process on the
system?

This is a classic who-created-the-creator kind of problem, and it has a simple answer.
When the kernel is bootstrapped it spawns a process called the init process. This
process has a ppid of 0 and is the 'grandparent of all processes'. It's the first one and it
has no ancestor. Its pid is 1 .
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Creating Your First Daemon Process
What do we need to get started? Not much. Any process can be made into a daemon
process.

Let's look to the rack project 1 for an example here. Rack ships with a rackup command
to serve applications using different rack supported web servers. Web servers are a
great example of a process that will never end; so long as your application is active
you'll need a server listening for connections.

The rackup command includes an option to daemonize the server and run it in the
background. Let's have a look at what that does.

1. http://github.com/rack/rack
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Diving into Rack
def daemonize_app
if RUBY_VERSION < "1.9"
exit if fork
Process.setsid
exit if fork
Dir.chdir "/"
STDIN.reopen "/dev/null"
STDOUT.reopen "/dev/null", "a"
STDERR.reopen "/dev/null", "a"

else
Process.daemon

end
end

Lots going on here. Let's first jump to the else block. Ruby 1.9.x ships with a method
called Process.daemon that will daemonize the current process! How convenient!

But don't you want to know how it works under the hood? I knew ya did! The truth is
that if you look at the MRI source for Process.daemon 2 and stumble through the C code
it ends up doing the exact same thing that Rack does in the if block above.

So let's continue using that as an example. We'll break down the code line by line.

2. https://github.com/ruby/ruby/blob/c852d76f46a68e28200f0c3f68c8c67879e79c86/process.c#L4817-4860
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Daemonizing a Process, Step by Step
exit if fork

This line of code makes intelligent use of the return value of the fork method. Recall
from the forking chapter that fork returns twice, once in the parent process and once
in the child process. In the parent process it returns the child's pid and in the child
process it returns nil.

As always, the return value will be truth-y for the parent and false-y for the child. This
means that the parent process will exit, and as we know, orphaned child processes
carry on as normal.

If a process is orphaned then what happens when you ask for Process.ppid?

This is where knowledge of the init process becomes relevant. The ppid of
orphaned processes is always 1 . This is the only process that the kernel can be sure
is active at all times.

This first step is imperative when creating a daemon because it causes the terminal
that invoked this script to think the command is done, returning control to the
terminal and taking it out of the equation.

Process.setsid
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Calling Process.setsid does three things:

1. The process becomes a session leader of a new session

2. The process becomes the process group leader of a new process group

3. The process has no controlling terminal

To understand exactly what effect these three things have we need to step out of the
context of our Rack example for a moment and look a little deeper.

Process Groups and Session Groups
Process groups and session groups are all about job control. By 'job control' I'm
referring to the way that processes are handled by the terminal.

We begin with process groups.

Each and every process belongs to a group, and each group has a unique integer id. A
process group is just a collection of related processes, typically a parent process and its
children. However you can also group your processes arbitrarily by setting their group
id using Process.setpgrp(new_group_id) .

Have a look at the output from the following snippet.

puts Process.getpgrp
puts Process.pid
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If you ran that code in an irb session then those two values will be equal. Typically the
process group id will be the same as the pid of the process group leader. The process
group leader is the 'originating' process of a terminal command. ie. If you start an irb
process at the terminal it will become the group leader of a new process group. Any
child processes that it creates will be made part of the same process group.

Try out the following example to see that process groups are inherited.

puts Process.pid
puts Process.getpgrp

fork {
puts Process.pid
puts Process.getpgrp

}

You can see that although the child process gets a unique pid it inherits the group id
from its parent. So these two processes are part of the same group.

You'll recall that we looked previously at Orphaned Processes. In that section I said
that child processes are not given special treatment by the kernel. Exit a parent process
and the child will continue on. This is the behaviour when a parent process exits, but
the behaviour is a bit different when the parent process is being controlled by a
terminal and is killed by a signal.

Consider for a moment: a Ruby script that shells out to a long-running shell
command, eg. a long backup script. What happens if you kill the Ruby script with a
Ctrl-C?
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If you try this out you'll notice that the long-running backup script is not orphaned, it
does not continue on when its parent is killed. We haven't set up any code to forward
the signal from the parent to the child, so how is this done?

The terminal receives the signal and forwards it on to any process in the foreground
process group. In this case, both the Ruby script and the long-running shell command
would part of the same process group, so they would both be killed by the same signal.

And then session groups...

A session group is one level of abstraction higher up, a collection of process groups.
Consider the following shell command:

git log | grep shipped | less

In this case each command will get its own process group, since each may be creating
child processes but none is a child process of another. Even though these commands
are not part of the same process group one Ctrl-C will kill them all.

These commands are part of the same session group. Each invocation from the shell
gets its own session group. An invocation may be a single command or a string of
commands joined by pipes.

Like in the above example, a session group may be attached to a terminal. It might also
not be attached to any terminal, as in the case of a daemon.

Again, your terminal handles session groups in a special way: sending a signal to the
session leader will forward that signal to all the process groups in that session, which
will forward it to all the processes in those process groups. Turtles all the way down ;)
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There is a system call for retrieving the current session group id, getsid(2), but Ruby's
core library has no interface to it. Using Process.setsid will return the id of the new
sesssion group it creates, you can store that if you need it.

So, getting back to our Rack example, in the first line a child process was forked and
the parent exited. The originating terminal recognized the exit and returned control to
the user, but the forked process still has the inherited group id and session id from its
parent. At the moment this forked process is neither a session leader nor a group
leader.

So the terminal still has a link to our forked process, if it were to send a signal to its
session group the forked process would receive it, but we want to be fully detached
from a terminal.

Process.setsid will make this forked process the leader of a new process group and a
new session group. Note that Process.setsid will fail in a process that is already a
process group leader, it can only be run from child processes.

This new session group does not have a controlling terminal, but technically one could
be assigned.

exit if fork

The forked process that had just become a process group and session group leader
forks again and then exits.

This newly forked process is no longer a process group leader nor a session leader.
Since the previous session leader had no controlling terminal, and this process is not a
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session leader, it's guaranteed that this process can never have a controlling terminal.
Terminals can only be assigned to session leaders.

This dance ensures that our process is now fully detached from a controlling terminal
and will run to its completion.

Dir.chdir "/"

This changes the current working directory to the root directory for the system. This
isn't strictly necessary but it's an extra step to ensure that current working directory of
the daemon doesn't disappear during its execution.

This avoids problems where the directory that the daemon was started from gets
deleted or unmounted for any reason.

STDIN.reopen "/dev/null"
STDOUT.reopen "/dev/null", "a"
STDERR.reopen "/dev/null", "a"

This sets all of the standard streams to go to /dev/null , a.k.a. to be ignored. Since the
daemon is no longer attached to a terminal session these are of no use anyway. They
can't simply be closed because some programs expect them to always be available.
Redirecting them to /dev/null ensures that they're still available to the program but
have no effect.
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In the Real World
As mentioned, the rackup command ships with a command line option for
daemonizing the process. Same goes with any of the popular Ruby web servers.

If you want to dig in to more internals of daemon processes you should look at the
daemons rubygem 3.

If you think you want to create a daemon process you should ask yourself one basic
question: Does this process need to stay responsive forever?

If the answer is no then you probably want to look at a cron job or background job
system. If the answer is yes, then you probably have a good candidate for a daemon
process.

System Calls
Ruby's Process.setsid maps to setsid(2), Process.getpgrp maps to getpgrp(2). Other
system calls mentioned in this chapter were covered in detail in previous chapters.

3. http://rubygems.org/gems/daemons

108

http://rubygems.org/gems/daemons


Chapter 19

Spawning Terminal
Processes
A common interaction in a Ruby program is 'shelling out' from your program to run a
command in a terminal. This happens especially when I'm writing a Ruby script to
glue together some common commands for myself. There are several ways you can
spawn processes to run terminal commands in Ruby.

Before we look at the different ways of 'shelling out' let's look at the mechanism they're
all using under the hood.

fork + exec
All of the methods described below are variations on one theme: fork(2) + execve(2).

We've had a good look at fork(2) in previous chapters, but this is our first look at
execve(2). It's pretty simple, execve(2) allows you to replace the current process with a
different process.

Put another way: execve(2) allows you to transform the current process into any other
process. You can take a Ruby process and turn it into a Python process, or an ls(1)
process, or another Ruby process.
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execve(2) transforms the process and never returns. Once you've transformed your
Ruby process into something else you can never come back.

exec 'ls', '--help'

The fork + exec combo is a common one when spawning new processes. execve(2) is a
very powerful and efficient way to transform the current process into another one; the
only catch is that your current process is gone. That's where fork(2) comes in handy.

You can use fork(2) to create a new process, then use execve(2) to transform that
process into anything you like. Voila! Your current process is still running just as it was
before and you were able to spawn any other process that you want to.

If your program depends on the output from the execve(2) call you can use the tools
you learned in previous chapters to handle that. Process.wait will ensure that your
program waits for the child process to finish whatever it's doing so you can get the
result back.

File descriptors and exec
At the OS level, a call to execve(2) doesn't close any open file descriptors by default.

However, a call to exec in Ruby will close all open file descriptors by default (excluding
the standard streams).

In other words, the default OS behaviour when you exec('ls') would be to give ls a
copy of any open file descriptors, eg. a database connection. This is rarely what you
want, so Ruby's default is to close all open file descriptors before doing an exec .
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This default behaviour of closing file descriptors on exec prevents file descriptor
'leaks'. A leak may happen when you fork + exec to spawn another process that has no
need for the file descriptors you currently have open (like your database connections,
logfiles, etc.) A leak can waste resources but, even worse, can lead to havoc when you
try to close your database connection, only to find that some other process
erroneously still has the connection open.

However, you may sometimes want to keep a file descriptor open, to pass an open
logfile or live socket to another program being booted via exec 1. You can control this
behaviour by passing an options hash to exec mapping file descriptor numbers to IO
objects, as seen in the following example.

hosts = File.open('/etc/hosts')

python_code = %Q[import os; print os.fdopen(#{hosts.fileno}).read()]

# The hash as the last arguments maps any file descriptors that should
# stay open through the exec.
exec 'python', '-c', python_code, {hosts.fileno => hosts}

In this example we start up a Ruby program and open the /etc/hosts file. Then we
exec a python process and tell it to open the file descriptor number that Ruby received
for opening the /etc/hosts file. You can see that python recognizes this file descriptor
(because it was shared via execve(2)) and is able to read from it without having to
open the file again.

1. The Unicorn web server uses this exact behavoiur to enable restarts without losing any connections. By passing the open
listener socket to the new version of itself through an exec , it ensures that the listener socket is never closed during a
restart.
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Notice the options hash mapping the file descriptor number to the IO object. If you
remove that hash, the Python program won't be able to open the file descriptor, that
declaration keeps it open through the execve(2).

Unlike fork(2), execve(2) does not share memory with the newly created process. In
the python example above, whatever was allocated in memory for the use of the Ruby
program was essentially wiped away when execve(2) was called leaving the python
program with a blank slate in terms of memory usage.

Arguments to exec
Notice in all of the examples above I sent an array of arguments to exec , rather than
passing them as a string? There's a subtle difference to the two argument forms.

Pass a string to exec and it will actually start up a shell process and pass the string to
the shell to interpret. Pass an array and it will skip the shell and set up the array
directly as the ARGV to the new process.

Generally you want to avoid passing a string unless you really need to. Pass an
array where possible. Passing a string and running code through the shell can raise
security concerns. If user input is involved it may be possible for them to inject a
malicious command directly in a shell, potentially gaining access to any privileges the
current process has. In a case where you want to do something like
exec('ls * | awk '{print($1)}') you'll have to pass it as a string.
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Kernel#system

system('ls')
system('ls', '--help')
system('git log | tail -10')

The return value of Kernel#system reflects the exit code of the terminal command in
the most basic way. If the exit code of the terminal command was 0 then it returns
true , otherwise it returns false .

The standard streams of the terminal command are shared with the current process
(through the magic of fork(2)), so any output coming from the terminal command
should be seen in the same way output is seen from the current process.

Kernel#`

`ls`
`ls --help`
%x[git log | tail -10]

Kernel#` works slightly differently. The value returned is the STDOUT of the terminal
program collected into a String.

As mentioned, it's using fork(2) under the hood and it doesn't do anything special
with STDERR , so you can see in the second example that STDERR is printed to the screen
just as with Kernel#system .

Kernel#` and %x[] do the exact same thing.
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Process.spawn

# This call will start up the 'rails server' process with the
# RAILS_ENV environment variable set to 'test'.
Process.spawn({'RAILS_ENV' => 'test'}, 'rails server')

# This call will merge STDERR with STDOUT for the duration
# of the 'ls --help' program.
Process.spawn('ls', '--zz', STDERR => STDOUT)

Process.spawn is a bit different than the others in that it is non-blocking.

If you compare the following two examples you will see that Kernel#system will block
until the command is finished, whereas Process.spawn will return immediately.

# Do it the blocking way
system 'sleep 5'

# Do it the non-blocking way
Process.spawn 'sleep 5'

# Do it the blocking way with Process.spawn
# Notice that it returns the pid of the child process
pid = Process.spawn 'sleep 5'
Process.waitpid(pid)
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The last example in this code block is a really great example of the flexibility of
Unix programming. In previous chapters we talked a lot about Process.wait , but it
was always in the context of forking and then running some Ruby code. You can
see from this example that the kernel cares not what you are doing in your process,
it will always work the same.

So even though we fork(2) and then run the sleep(1) program (a C program) the
kernel still knows how to wait for that process to finish. Not only that, it will be
able to properly return the exit code just as was happening in our Ruby programs.

All code looks the same to the kernel; that's what makes it such a flexible system.
You can use any programming language to interact with any other programming
language, and all will be treated equally.

Process.spawn takes many options that allow you to control the behaviour of the child
process. I showed a few useful ones in the example above. Consult the official rdoc 2 for
an exhaustive list.

IO.popen

# This example will return a file descriptor (IO object). Reading from it
# will return what was printed to STDOUT from the shell command.
IO.popen('ls')

2. http://www.ruby-doc.org/core-1.9.3/Process.html#method-c-spawn
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The most common usage for IO.popen is an implementation of Unix pipes in pure
Ruby. That's where the 'p' comes from in popen. Underneath it's still doing the
fork+exec, but it's also setting up a pipe to communicate with the spawned process.
That pipe is passed as the block argument in the block form of IO.popen .

# An IO object is passed into the block. In this case we open the stream
# for writing, so the stream is set to the STDIN of the spawned process.
#
# If we open the stream for reading (the default) then
# the stream is set to the STDOUT of the spawned process.
IO.popen('less', 'w') { |stream|
stream.puts "some\ndata"

}

With IO.popen you have to choose which stream you have access to. You can't access
them all at once.

open3

Open3 allows simultaneous access to the STDIN, STDOUT, and STDERR of a spawned
process.
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# This is available as part of the standard library.
require 'open3'

Open3.popen3('grep', 'data') { |stdin, stdout, stderr|
stdin.puts "some\ndata"
stdin.close
puts stdout.read

}

# Open3 will use Process.spawn when available. Options can be passed to
# Process.spawn like so:
Open3.popen3('ls', '-uhh', :err => :out) { |stdin, stdout, stderr|
puts stdout.read

}

Open3 acts like a more flexible version of IO.popen , for those times when you need it.

In the Real World
All of these methods are common in the Real World. Since they all differ in their
behaviour you have to select one based on your needs.

One drawback to all of these methods is that they rely on fork(2). What's wrong with
that? Imagine this scenario: You have a big Ruby app that is using hundreds of MB of
memory. You need to shell out. If you use any of the methods above you'll incur the
cost of forking.

Even if you're shelling out to a simple ls(1) call the kernel will still need to make sure
that all of the memory that your Ruby process is using is available for that new ls(1)
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process. Why? Because that's the API of fork(2). When you fork(2) the process the
kernel doesn't know that you're about to transform that process with an exec(2). You
may be forking in order to run Ruby code, in which case you'll need to have all of the
memory available.

It's good to keep in mind that fork(2) has a cost, and sometimes it can be a
performance bottleneck. What if you need to shell out a lot and don't want to incur
the cost of fork(2)?

There are some native Unix system calls for spawning processes without the overhead
of fork(2). Unfortunately they don't have support in the Ruby language core library.
However, there is a Rubygem that provides a Ruby interface to these system calls. The
posix-spawn project 3 provides access to posix_spawn(2), which is available on most
Unix systems.

posix-spawn mimics the Process.spawn API. In fact, most of the options that you pass
to Process.spawn can also be passed to POSIX::Spawn.spawn . So you can keep using the
same API and yet reap the benefits of faster, more resource efficient spawning.

At a basic level posix_spawn(2) is a subset of fork(2). Recall the two discerning
attributes of a new child process from fork(2): 1) it gets an exact copy of everything
that the parent process had in memory, and 2) it gets a copy of all the file descriptors
that the parent process had open.

posix_spawn(2) preserves #2, but not #1. That's the big difference between the two. So
you can expect a newly spawned process to have access to any of the file descriptors
opened by the parent, but it won't share any of the memory. This is what makes
posix_spawn(2) faster and more efficient than fork(2). But keep in mind that it also
makes it less flexible.

3. http://github.com/rtomayko/posix-spawn
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System Calls
Ruby's Kernel#system maps to system(3), Kernel#exec maps to execve(2), IO.popen
maps to popen(3), posix-spawn uses posix_spawn(2). Ruby controls the 'close-on-exec'
behaviour using fcntl(2) with the FD_CLOEXEC option.
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Chapter 20

Ending
Working with processes in Unix is about two things: abstraction and communication.

Abstraction
The kernel has an extremely abstract (and simple) view of its processes. As
programmers we're used to looking at source code as the differentiator between two
programs.

We are masters of many programming languages, using each for different purposes.
We couldn't possibly write memory-efficient code in a language with a garbage
collector, we'll have to use C. But we need objects, let's use C++. On and on.

But if you ask the kernel it all looks the same. In the end, all of our code is compiled
down to something simple that the kernel can understand. And when it's working at
that level all processes are treated the same. Everything gets its numeric identifier and
is given equal access to the resources of the kernel.

What's the point of all this jibber-jabber? Using Unix programming lets you twiddle
with these knobs a little bit. It lets you do things that you can't accomplish when
working at the programming language level.

Unix programming is programming language agnostic. It lets you interface your Ruby
script with a C program, and vice versa. It also lets you reuse its concepts across
programming languages. The Unix Programming skills that you get from Ruby will be
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just as applicable in Python, or node.js, or C. These are skills that are about
programming in general.

Communication
Besides the basic act of creating new processes, almost everything else we talked about
was regarding communication. Following the principle of abstraction mentioned
above, the kernel provides very abstract ways of communicating between processes.

Using signals any two processes on the system can communicate with each other. By
naming your processes you can communicate with any user who is inspecting your
program on the command line. Using exit codes you can send success/failure messages
to any process that's looking after your own.

Farewell, But Not Goodbye
That's the end! Congratulations for making it here! Believe it or not, you now know
more than most programmers about the inner workings of Unix processes.

Now that you know the fundamentals you can go out apply your newfound knowledge
to anything that you work on. Things are going to start making more sense for you.
And the more you apply your newfound knowledge: the clearer things will become.
There's no stopping you now.

And we haven't even talked about networking :) We'll save that one for another
edition.
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Read the appendices at the end of this book for a look at some popular Ruby projects
and how they use Unix processes to be awesome.

If you have any feedback on this book, find an error or build something cool with your
newfound knowledge, I'd love to hear it. Send a message to jesse@jstorimer.com.
Happy coding!

122



Chapter 21

Appendix: How Resque
Manages Processes
This section looks at how a popular Ruby job queue, Resque 1, effectively manages
processes. Specifically it makes use of fork(2) to manage memory, not for concurrency
or speed reasons.

The Architecture
To understand why Resque works the way it does we need a basic understanding of
how the system works.

From the README:

Resque is a Redis-backed library for creating background jobs, placing those
jobs on multiple queues, and processing them later.

The component that we're interested in is the Resque worker. Resque workers take care
of the 'processing them later' part. The job of a Resque worker is to boot up, load your
application environment, then connect to Redis and try to reserve any pending
background jobs. When it's able to reserve one such job it works off the job, then goes
back to step 1. Simple enough.

1. http://github.com/defunkt/resque#readme
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For an application of non-trivial size one Resque worker is not enough. So it's very
common to spin up multiple Resque workers in parallel to work off jobs.

Forking for Memory Management
Resque workers employ fork(2) for memory management purposes. Let's have a look at
the relevant bit of code (from Resque v1.18.0) eand then dissect it line by line.

if @child = fork
srand # Reseeding
procline "Forked #{@child} at #{Time.now.to_i}"
Process.wait(@child)

else
procline "Processing #{job.queue} since #{Time.now.to_i}"
perform(job, &block)
exit! unless @cant_fork

end

This bit of code is executed every time Resque works off a job.

If you've read through the Forking chapter then you'll already be familiar with the if/
else style here. Otherwise go read it now!

We'll start by looking at the code inside the parent process (ie. inside the if block).

srand # Reseeding

This line is here simply because of a bug 2 in a certain patchlevel of MRI Ruby 1.8.7.
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procline "Forked #{@child} at #{Time.now.to_i}"

procline is Resque's internal way of updating the name of the current process.
Remember we noted that you can change the name of the current process by setting
$0 but Ruby doesn't include a method for it?

This is Resque's solution. procline sets the name of the current process.

Process.wait(@child)

If you've read the chapter on Process.wait then this line of code should be familiar to
you.

The @child variable was assigned the value of the fork call. So in the parent process
that will be the child pid. This line of code tells the parent process to block until the
child is finished.

Now we'll look at what happens in the child process.

procline "Processing #{job.queue} since #{Time.now.to_i}"

Notice that both the if and else block make a call to procline. Even though these two
lines are part of the same logical construct they are being executed in two different
processes. Since the process name is process-specific these two calls will set the name
for the parent and child process respectively.

2. http://redmine.ruby-lang.org/issues/4338
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perform(job, &block)

Here in the child process is where the job is actually 'performed' by Resque.

exit! unless @cant_fork

Then the child process exits.

Why Bother?
As mentioned in the first paragraph of this chapter, Resque isn't doing this to achieve
concurrency or to make things faster. In fact, it adds an extra step to the processing of
each job which makes the whole thing slower. So why go to the trouble? Why not just
process job after job?

Resque uses fork(2) to ensure that the memory usage of its worker processes don't
bloat. Let's review what happens when a Resque worker forks and how that affects the
Ruby VM.

You'll recall that fork(2) creates a new process that's an exact copy of the original
process. The original process, in this case, has preloaded the application environment
and nothing else. So we know that after forking we'll have a new process with just the
application environment loaded.

Then the child process will go to the task of working off the job. This is where memory
usage can go awry. The background job may require that image files are loaded into
main memory for processing, or many ActiveRecord objects are fetched from the
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database, or any other operation that requires large amounts of main memory to be
used.

Once the child process is finished with the job it exits, which releases all of its memory
back to the OS to clean up. Then the original process can resume, once again with only
the application environment loaded.

So each time after a job is performed by Resque you end up back at a clean slate in
terms of memory usage. This means that memory usage may spike when jobs are
being worked on, but it should always come back to that nice baseline.

Doesn't the GC clean up for us?
Well, yes, but it doesn't do a great job. It does an OK job. The truth is that MRI's GC
has a hard time releasing memory that it doesn't need anymore.

When the Ruby VM boots up it is allocated a certain block of main memory by the
kernel. When it uses up all that it has it needs to ask for another block of main
memory from the kernel.

Due to numerous issues with Ruby's GC (naive approach, disk fragmentation) it is rare
that the VM is able to release a block of memory back to the kernel. So the memory
usage of a Ruby process is likely to grow over time, but not to shrink. Now Resque's
approach begins to make sense!

If the Resque worker simply worked off each job as it became available then it wouldn't
be able to maintain that nice baseline level of memory usage. As soon as it worked on
a job that required lots of main memory then that memory would be stuck with the
worker process until it exited.
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Even if subsequent jobs needed much less memory Ruby would have a hard time
giving that memory back to the kernel. Hence, the worker processes would inevitably
get bigger over time. Never shrinking.

Thanks to the power of fork(2) Resque workers are reliable and don't need to be
restarted after working a certain number of jobs.
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Chapter 22

Appendix: How Unicorn
Reaps Worker Processes
Any investigation of Unix Programming in the Ruby language would be remiss without
many mentions of the Unicorn web server 1. Indeed, the project has already been
mentioned several times in this book.

What's the big deal? Unicorn is a web server that attempts to push as much
responsibility onto the kernel as it can. It uses lots of Unix Programming. The
codebase is chock full of Unix Programming techniques.

Not only that, but it's performant and reliable. It's used by lots of big Ruby websites
like Github and Shopify.

The point is, if this book has whet your appetite and you want to learn more about
Unix Programming in Ruby you should plumb the depths of Unicorn. It may take you
several trips into the belly of the mythical beast but you will come out with better
understanding and new ideas.

Reaping What?
Before we dive into the code I'd like to provide a bit of context about how Unicorn
works. At a very high level Unicorn is a pre-forking web server.

1. http://unicorn.bogomips.org
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This means that you boot it up and tell it how many worker processes you would like it
to have. It starts by initializing its network sockets and loading your application. Then
it uses fork(2) to create the worker processes. It uses the master-worker pattern we
mentioned in the chapter on forking.

The Unicorn master process keep a heartbeat on each of its workers and ensures
they're not taking too long to process requests. The code below is used when you tell
the Unicorn master process to exit. As we covered in chapter (Forking) if a parent
process doesn't kill its children before it exits they will continue on without stopping.

So it's important that Unicorn clean up after itself before it exits. The code below is
invoked as part of Unicorn's exit procedure. Before invoking this code it will send a
QUIT signal to each of its worker process, instructing it to exit gracefully.

The code below is used by Unicorn (current as of v4.0.0) to clean up its internal
representation of its workers and ensure that they all exited properly.

Let's dive in.
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# reaps all unreaped workers
def reap_all_workers
begin
wpid, status = Process.waitpid2(-1, Process::WNOHANG)
wpid or return
if reexec_pid == wpid
logger.error "reaped #{status.inspect} exec()-ed"
self.reexec_pid = 0
self.pid = pid.chomp('.oldbin') if pid
proc_name 'master'

else
worker = WORKERS.delete(wpid) and worker.close rescue nil
m = "reaped #{status.inspect} worker=#{worker.nr rescue 'unknown'}"
status.success? ? logger.info(m) : logger.error(m)

end
rescue Errno::ECHILD
break

end while true
end

We'll take it one line at a time:

begin
...

end while true

The first thing that I want to draw your attention to is the fact that the begin block
that's started on the first line of this method actually starts an endless loop. There are
others ways to write endless loops in Ruby, but the important part is to keep in mind
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that we are in an endless loop so we'll need a hard return or a break in order to finish
this method.

wpid, status = Process.waitpid2(-1, Process::WNOHANG)

This line should have some familiarity. We looked at Process.waitpid2 in the chapter
on Process.wait .

There we saw that passing a valid pid as the first option would cause the
Process.waitpid call to wait only for that pid. What happens when you pass -1 to
Process.waitpid? We know that there are no processes with a pid less than 1, so...

Passing -1 waits for any child process to exit. It turns out that this is the default
option to that method. If you don't specify a pid then it uses -1 by default. In this
case, since the author needed to pass something in for the second argument, the first
argument couldn't be left blank, so it was set to the default.

Hey, if you're waiting on any child process why not use Process.wait2 then? I suspect
that the author decided here, and I agree with him, that it was most readable to use a
waitpid variation when specifying a value for the pid. As mentioned above the value
specified is simply the default, but nonetheless it's most salient to use waitpid if you're
specifying any value for the pid.

Remember Process::WNOHANG from before? When using this flag if there are no
processes that have exited for us then it will not block and simply return nil.

wpid or return
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This line may look a little odd but it's actually a conditional return statement. If wpid
is nil then we know that the last line returned nil . This would mean that there are no
child processes that have exited returning their status to us.

If this is the case then this method will return and its job is done.

if reexec_pid == wpid
logger.error "reaped #{status.inspect} exec()-ed"
self.reexec_pid = 0
self.pid = pid.chomp('.oldbin') if pid
proc_name 'master'

I don't want to spend much time talking about this bit. The 'reexec' stuff has to do
with Unicorn internals, specifically how it handles zero-downtime restarts. Perhaps I
can cover that process in a future report.

One thing that I will draw your attention to is the call to proc_name . This is similar to
the procline method from the Resque chapter. Unicorn also has a method for
changing the display name of the current process. A critical piece of communication
with the user of your software.

else
worker = WORKERS.delete(wpid) and worker.close rescue nil

Unicorn stores a list of currently active worker processes in its WORKERS constant.
WORKERS is a hash where the key is the pid of the worker process and the value is an
instance of Unicorn::Worker .
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So this line removes the worker process from Unicorn's internal tracking list (WORKERS )
and calls #close on the worker instance, which closes its no longer needed heartbeat
mechanism.

m = "reaped #{status.inspect} worker=#{worker.nr rescue 'unknown'}"

These lines craft a log message based on the status returned from the
Process.waitpid2 call.

The string is crafted by first inspecting the status variable. What does that look like?
Something like this:

#<Process::Status: pid=32227,exited(0)>
# or
#<Process::Status: pid=32308,signaled(SIGINT=2)>

It includes the pid of the ended process, as well as the way it ended. In the first line the
process exited itself with an exit code of 0. In the second line the process was killed
with a signal, SIGINT in this case. So a line like that will be added to the Unicorn log.

The second part of the log line worker.nr is Unicorn's internal representation of the
worker's number.

status.success? ? logger.info(m) : logger.error(m)
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This line takes the crafted log message and sends it to the logger. It uses the success?
method on the status object to log this message as at the INFO level or the ERROR
level.

The success? method will only return true in one case, when the process exited with
an exit code of 0. If it exited with a different code it will return false . If it was killed by
a signal, it will return nil .

rescue Errno::ECHILD
break

This is part of the top-level begin statement in this method. If this exception is raised
then the endless loop that is this method break s and it will return.

The Errno::ECHILD exception will be raised by Process.waitpid2 (or any of its cousins)
if there are no child processes for the current processes. If that happens in this case
then it means the job of this method is done! All of the child processes have been
reaped. So it returns.

Conclusion
If this bit of code interested you and you want to learn more about Unix Programming
in Ruby, Unicorn is a great resource. See the official site at
http://unicorn.bogomips.org and go learn!
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Chapter 23

Appendix: Preforking
Servers
I'm glad you made it this far because this chapter may be the most action-packed in
the whole book. Preforking servers bring together a lot of the concepts that are
explained in this book into a powerful, highly-efficient approach to solving certain
problems.

There's a good chance that you've used either Phusion Passenger 1 or Unicorn 2. Both of
those servers, and Spyglass (the web server included with this book), are examples of
preforking servers.

At the core of all these projects is the preforking model. There are a few things about
preforking that make it special, here are 3:

1. Efficient use of memory.

2. Efficient load balancing.

3. Efficient sysadminning.

We'll look at each in turn.

1. http://www.modrails.com/
2. http://unicorn.bogomips.org

136

http://www.modrails.com/
http://unicorn.bogomips.org


Efficient use of memory
In the chapter on forking we discussed how fork(2) creates a new process that's an
exact copy of the calling (parent) process. This includes anything that the parent
process had in memory at the time.

Loading a Rails App

On my Macbook Pro loading only Rails 3.1 (no libraries or application code) takes
in the neighbourhood of 3 seconds. After loading Rails the process is consuming
about 70MB of memory.

Whether or not these numbers are exactly the same on your machine isn't
significant for our purposes. I'll be referring to these as a baseline in the following
examples.

Preforking uses memory more efficiently than does spawning multiple unrelated
processes. For comparison, this is like running Unicorn with 10 worker processes
compared to running 10 instances of Mongrel (a non-preforking server).

Let's review what will happen from the standpoint of processes, first looking at
Mongrel, then at Unicorn, when we boot up 10 instances of each server.
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Many Mongrels
Booting up 10 Mongrel processes in parallel will look about the same as booting up 10
Mongrel processes serially.

When booting them in parallel all 10 processes will be competing for resources from
the kernel. Each will be consuming resources to load Rails, and each can be expected
to take the customary 3 seconds to boot. In total, that's 30 seconds. On top of that,
each process will be consuming 70MB of memory once Rails has been loaded. In total,
that's 700MB of memory for 10 processes.

A preforking server can do better.

Many Unicorn
Booting up 10 Unicorn workers will make use of 11 processes. One process will be the
master, babysitting the other worker processes, of which there are 10.

When booting Unicorn only one process, the master process, will load Rails. There
won't be competition for kernel resources.

The master process will take the customary 3 seconds to load, and forking 10 processes
will be more-or-less instantaneous. The master process will be consuming 70MB of
memory to load Rails and, thanks to copy-on-write, the child processes should not be
using any memory on top of what the master was using.
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The truth is that it does take some time to fork a process (it's not instantaneous) and
that there is some memory overhead for each child process. These values are negligible
compared to the overhead of booting many Mongrels. Preforking wins.

Keep in mind that the benefits of copy-on-write are forfeited if you're running
MRI. To reap these benefits you need to be using REE.

Efficient load balancing
I already highlighted the fact that fork(2) creates an exact copy of the calling process.
This includes any file descriptors that the parent process has open.

The Very Basics of Sockets

Efficient load balancing has a lot to do with how sockets work. Since we're talking
about web servers: sockets are important. They're at the very core of networking.
As I hinted earlier: sockets and networking are a complex topic, too big to fit into
this book. But you need to understand the very basic workflow in order to
understand this next part.

Using a socket involves multiple steps: 1) A socket is opened and binds to a unique
port, 2) A connection is accepted on that socket using accept(2), and 3) Data can
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be read from this connection, written to the connection, and ultimately the
connection is closed. The socket stays open, but the connection is closed.

Typically this would happen in the same process. A socket is opened, then the process
waits for connections on that socket. The connection is handled, closed, and the loop
starts over again.

Preforking servers use a different workflow to let the kernel balance heavy load across
the socket. Let's look at how that's done.

In servers like Unicorn and Spyglass the first thing that the master process does is
open the socket, before even loading the Rails app. This is the socket that is available
for external connections from web clients. But the master process does not accept
connections. Thanks to the way fork(2) works, when the master process forks worker
processes each one gets a copy of the open socket.

This is where the magic happens.

Each worker process has an exact copy of the open socket, and each worker process
attempts to accept connections on that socket using accept(2). This is where the kernel
takes over and balances load across the 10 copies of the socket. It ensures that one, and
only one, process can accept each individual connection. Even under heavy load the
kernel ensures that the load is balanced and that only one process handles each
connection.

Compare this to how Mongrel achieves load balancing.
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Given 10 unrelated processes that aren't sharing a socket each one must bind to a
unique port. Now a piece of infrastructure must sit in front of all of the Mongrel
processes. It must know which port each Mongrel processes is bound to, and it must
do the job of making sure that each Mongrel is handling only one connection at a time
and that connections are load balanced properly.

Again, preforking wins both for simplicity and resource efficiency.

Efficient sysadminning
This point is less technical, more human-centric.

As someone administering a preforking server you typically only need to issue
commands (usually signals) to the master process. It will handle keeping track of and
relaying messages to its worker processes.

When administering many instances of a non-preforking server the sysadmin must
keep track of each instance, adminster them separately and ensure that their
commands are followed.

Basic Example of a Preforking Server
What follows is some really basic code for a preforking server. It can respond to
requests in parallel using multiple processes and will leverage the kernel for load
balancing. For a more involved example of a preforking server I suggest you check out
the Spyglass source code (next chapter) or the Unicorn source code.

141



require 'socket'

# Open a socket.
socket = TCPServer.open('0.0.0.0', 8080)

# Preload app code.
# require 'config/environment'

# Forward any relevant signals to the child processes.
[:INT, :QUIT].each do |signal|
Signal.trap(signal) {
wpids.each { |wpid| Process.kill(signal, wpid) }

}
end

# For keeping track of child process pids.
wpids = []

5.times {
wpids << fork do
loop {
connection = socket.accept
connection.puts 'Hello Readers!'
connection.close

}
end

}

Process.waitall

You can consume it with something like nc(1) or telnet(1) to see it in action.
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$ nc localhost 8080
$ telnet localhost 8080

Notice that I snuck something new into that one? We haven't seen
Process.waitall yet, it appeared on the last line of the example code above.

Process.waitall is simply a convenience method around Process.wait . It runs a
loop waiting for all child processes to exit and returns an array of process statuses.
Useful when you don't actually want to do anything with the process status info, it
just waits for the children to exit.
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Chapter 24

Appendix: Spyglass
If you want to know even more about Unix processes then your next stop should be
the included Spyglass project. Why? Because it was written specifically to showcase
Unix programming concepts.

If you have a copy of this book but didn't get the included code project, send me
an email and I'll hook you up: jesse@jstorimer.com.

The case studies you read are meant to showcase the same thing, but at times they can
be dense and hard to read when you're new to Unix programming. Spyglass is meant to
bridge that gap.

Spyglass' Architecture
Spyglass is a web server. It opens a socket to the outside world and handles web
requests. Spyglass parses HTTP, is Rack-compliant, and is awesome.

Here's a brief summary of how to start a Spyglass server and what happens when it
receives an HTTP request.
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Booting Spyglass
$ spyglass
$ spyglass -p other_port
$ spyglass -h # for help

Before a Request Arrives
After it boots, control is passed to Spyglass::Lookout . This class DOES NOT preload
the Rack application and knows nothing about HTTP, it just waits for a connection. At
this point in time Spyglass is extremely lightweight, it's nothing more than just an
open socket.

Connection is Made
When Spyglass::Lookout is notified that a connection has been made it forks a
Spyglass::Master to actually handle the connection. Spyglass::Lookout uses
Process.wait after forking the master process, so it remains idle until the master exits.

Spyglass::Master is responsible for preloading the Rack application and forking/
babysitting worker processes. The master process itself doesn't know anything about
HTTP parsing or request handling.

The real work is done in Spyglass::Worker . It accepts connections using the method
outlined in the chapter on preforking, leaning on the kernel for load balancing. Once
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it has a connection it parses the HTTP request, calls the Rack app, and writes the
response to the client.

Things Get Quiet
So long as there is a steady flow of incoming traffic Spyglass continues to act as a
preforking server. If its internal timeout is able to expire without receiving any more
incoming requests then the master process, and all its worker processes, exit. Control
is returned to Spyglass::Lookout and the workflow begins again.

Getting Started
Spyglass is not a production-ready server, so don't rush to start using it for your
projects! It's a codebase that's meant to be read. It's heavily commented and formatted
documentation is generated with rocco 1.

The best thing to do at this point is enter the code directory that comes with this book
in your terminal, find the Spyglass codebase, and run rake read . This will open up the
formatted documentation in your browser for your reading pleasure.

Now go forth and read the code! And may the fork(2) be with you!

1. http://rtomayko.github.com/rocco
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